Pamela Reinagel
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pamela Reinagel.
Neuron | 2011
Robert E. Clark; Pamela Reinagel; Nicola J. Broadbent; Erik D. Flister; Larry R. Squire
We developed a behavioral paradigm for the rat that made it possible to separate the evaluation of memory functions from the evaluation of perceptual functions. Animals were given extensive training on an automated two-choice discrimination task and then maintained their memory performance at a high level while interpolated probe trials tested visual perceptual ability. The probe trials systematically varied the degree of feature ambiguity between the stimuli, such that perceptual functions could be tested across 14 different levels of difficulty. As feature ambiguity increased, performance declined in an orderly, monotonic manner (from 87% correct to chance, 50% correct). Bilateral lesions of the perirhinal cortex fully spared the capacity to make feature-ambiguous discriminations and the performance of lesioned and intact animals was indistinguishable at every difficulty level. In contrast, the perirhinal lesions did impair recognition memory. The findings suggest that the perirhinal cortex is important for memory and not for perceptual functions.
PLOS ONE | 2013
Sarah Petruno; Robert E. Clark; Pamela Reinagel
The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.
PLOS ONE | 2013
Pamela Reinagel
Animals must continuously evaluate sensory information to select the preferable among possible actions in a given context, including the option to wait for more information before committing to another course of action. In experimental sensory decision tasks that replicate these features, reaction time distributions can be informative about the implicit rules by which animals determine when to commit and what to do. We measured reaction times of Long-Evans rats discriminating the direction of motion in a coherent random dot motion stimulus, using a self-paced two-alternative forced-choice (2-AFC) reaction time task. Our main findings are: (1) When motion strength was constant across trials, the error trials had shorter reaction times than correct trials; in other words, accuracy increased with response latency. (2) When motion strength was varied in randomly interleaved trials, accuracy increased with motion strength, whereas reaction time decreased. (3) Accuracy increased with reaction time for each motion strength considered separately, and in the interleaved motion strength experiment overall. (4) When stimulus duration was limited, accuracy improved with stimulus duration, whereas reaction time decreased. (5) Accuracy decreased with response latency after stimulus offset. This was the case for each stimulus duration considered separately, and in the interleaved duration experiment overall. We conclude that rats integrate visual evidence over time, but in this task the time of their response is governed more by elapsed time than by a criterion for sufficient evidence.
Network: Computation In Neural Systems | 2008
Kate S. Gaudry; Pamela Reinagel
Neural spiking responses can include a variety of spiking patterns. However, neither the mere presence of the patterns nor the patterns frequency indicates that the pattern conveys distinct stimulus information. Here, we present an in-depth analysis of a Pattern Information measure, which quantifies how informative it is to distinguish a particular pattern of spikes from either a single spike or an another pattern. (1) We show how a shuffle-controlled estimation method minimizes the impact of sampling bias. (2) We describe how the Pattern Information could arise from time-varying firing rates, and we demonstrate an analysis to determine whether Pattern Information associated with a particular pattern captures structure not contained in the time-varying firing rate. (3) Because patterns may contain several spikes or inter-spike intervals, we extend the Pattern Information measure to determine whether the complete pattern carries information distinct from sub-patterns containing only a fraction of these spikes or intervals. (4) The Pattern Information is applied to determine whether a plurality of patterns carry distinct stimulus information from one another. In particular, we demonstrate these concepts using data from cells of the lateral geniculate nucleus (LGN), thereby extending previous analysis demonstrating that distinguishes between bursts of spikes and single spikes providing visual information.
Frontiers in Neural Circuits | 2013
Pamela Reinagel
The trade-off between speed and accuracy of sensory discrimination has most often been studied using sensory stimuli that evolve over time, such as random dot motion discrimination tasks. We previously reported that when rats perform motion discrimination, correct trials have longer reaction times than errors, accuracy increases with reaction time, and reaction time increases with stimulus ambiguity. In such experiments, new sensory information is continually presented, which could partly explain interactions between reaction time and accuracy. The present study shows that a changing physical stimulus is not essential to those findings. Freely behaving rats were trained to discriminate between two static visual images in a self-paced, two-alternative forced-choice reaction time task. Each trial was initiated by the rat, and the two images were presented simultaneously and persisted until the rat responded, with no time limit. Reaction times were longer in correct trials than in error trials, and accuracy increased with reaction time, comparable to results previously reported for rats performing motion discrimination. In the motion task, coherence has been used to vary discrimination difficulty. Here morphs between the previously learned images were used to parametrically vary the image similarity. In randomly interleaved trials, rats took more time on average to respond in trials in which they had to discriminate more similar stimuli. For both the motion and image tasks, the dependence of reaction time on ambiguity is weak, as if rats prioritized speed over accuracy. Therefore we asked whether rats can change the priority of speed and accuracy adaptively in response to a change in reward contingencies. For two rats, the penalty delay was increased from 2 to 6 s. When the penalty was longer, reaction times increased, and accuracy improved. This demonstrates that rats can flexibly adjust their behavioral strategy in response to the cost of errors.
Neuron | 2007
Pamela Reinagel
In the thalamus, bursts and single spikes are elicited by distinct visual stimuli, suggesting distinct visual functions. In this issue of Neuron, Wang et al. make use of intracellular recordings of thalamic neurons in vivo to provide a clear, detailed explanation of how natural stimuli are converted into a neural code that uses both bursts and single spikes.
Journal of Neurophysiology | 2016
Balaji Sriram; Philip Meier; Pamela Reinagel
Visual response properties of neurons in the dorsolateral geniculate nucleus (dLGN) have been well described in several species, but not in rats. Analysis of responses from the unanesthetized rat dLGN will be needed to develop quantitative models that account for visual behavior of rats. We recorded visual responses from 130 single units in the dLGN of 7 unanesthetized rats. We report the response amplitudes, temporal frequency, and spatial frequency sensitivities in this population of cells. In response to 2-Hz visual stimulation, dLGN cells fired 15.9 ± 11.4 spikes/s (mean ± SD) modulated by 10.7 ± 8.4 spikes/s about the mean. The optimal temporal frequency for full-field stimulation ranged from 5.8 to 19.6 Hz across cells. The temporal high-frequency cutoff ranged from 11.7 to 33.6 Hz. Some cells responded best to low temporal frequency stimulation (low pass), and others were strictly bandpass; most cells fell between these extremes. At 2- to 4-Hz temporal modulation, the spatial frequency of drifting grating that drove cells best ranged from 0.008 to 0.18 cycles per degree (cpd) across cells. The high-frequency cutoff ranged from 0.01 to 1.07 cpd across cells. The majority of cells were driven best by the lowest spatial frequency tested, but many were partially or strictly bandpass. We conclude that single units in the rat dLGN can respond vigorously to temporal modulation up to at least 30 Hz and spatial detail up to 1 cpd. Tuning properties were heterogeneous, but each fell along a continuum; we found no obvious clustering into discrete cell types along these dimensions.
Frontiers in Neuroanatomy | 2012
Claire B. Discenza; Pamela Reinagel
The pigmented rat is an increasingly important model in visual neuroscience research, yet the lamination of retinal projections in the dLGN has not been examined in sufficient detail. From previous studies it was known that most of the rat dLGN receives monocular input from the contralateral eye, with a small island receiving predominantly ipsilateral projections. Here we revisit the question using cholera toxin B subunit, a tracer that efficiently fills retinal terminals after intra-ocular injection. We imaged retinal termini throughout the dLGN at 0.5 μm resolution and traced areas of ipsilateral and contralateral terminals to obtain a high resolution 3D reconstruction of the projection pattern. Retinal termini in the dLGN are well segregated by eye of origin, as expected. We find, however, that the ipsilateral projections form multiple discrete projection zones in three dimensions, not the single island previously described. It remains to be determined whether these subdomains represent distinct functional sublaminae, as is the case in other mammals.
bioRxiv | 2018
Balaji Sriram; Alberto Cruz-Martin; Lillian Li; Pamela Reinagel; Anirvan Ghosh
The cortical code that underlies perception must enable subjects to perceive the world at timescales relevant for behavior. We find that mice can integrate visual stimuli very quickly (<100 ms) to reach plateau performance in an orientation discrimination task. To define features of cortical activity that underlie performance at these timescales, we measured single unit responses in the mouse visual cortex at timescales relevant to this task. In contrast to high contrast stimuli of longer duration, which elicit reliable activity in individual neurons, stimuli at the threshold of perception elicit extremely sparse and unreliable responses in V1 such that the activity of individual neurons do not reliably report orientation. Integrating information across neurons, however, quickly improves performance. Using a linear decoding model, we estimate that integrating information over 50-100 neurons is sufficient to account for behavioral performance. Thus, at the limits of perception the visual system is able to integrate information across a relatively small number of highly unreliable single units to generate reliable behavior.
Frontiers in Behavioral Neuroscience | 2018
Pamela Reinagel
High-throughput behavioral training of rodents has been a transformative development for systems neuroscience. Water or food restriction is typically required to motivate task engagement. We hypothesized a gap between physiological water need and hedonic water satiety that could be leveraged to train rats for water rewards without water restriction. We show that when Citric Acid (CA) is added to water, female rats drink less, yet consume enough to maintain long term health. With 24 h/day access to a visual task with water rewards, rats with ad lib CA water performed 84% ± 18% as many trials as in the same task under water restriction. In 2-h daily sessions, rats with ad lib CA water performed 68% ± 13% as many trials as under water restriction. Using reward sizes <25 μl, rats with ad lib CA performed 804 ± 285 trials/day in live-in sessions or 364 ± 82 trials/day in limited duration daily sessions. The safety of CA water amendment was previously shown for male rats, and the gap between water need and satiety was similar to what we observed in females. Therefore, it is likely that this method will generalize to male rats, though this remains to be shown. We conclude that at least in some contexts rats can be trained using water rewards without water restriction, benefitting both animal welfare and scientific productivity.