Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pankaj Chaudhary is active.

Publication


Featured researches published by Pankaj Chaudhary.


International Journal of Radiation Oncology Biology Physics | 2014

Relative Biological Effectiveness Variation Along Monoenergetic and Modulated Bragg Peaks of a 62-MeV Therapeutic Proton Beam: A Preclinical Assessment

Pankaj Chaudhary; Thomas I. Marshall; Francesca M. Perozziello; Lorenzo Manti; Frederick Currell; Fiona Hanton; Stephen J. McMahon; Joy N. Kavanagh; G.A.P. Cirrone; F. Romano; Kevin Prise; Giuseppe Schettino

PURPOSE The biological optimization of proton therapy can be achieved only through a detailed evaluation of relative biological effectiveness (RBE) variations along the full range of the Bragg curve. The clinically used RBE value of 1.1 represents a broad average, which disregards the steep rise of linear energy transfer (LET) at the distal end of the spread-out Bragg peak (SOBP). With particular attention to the key endpoint of cell survival, our work presents a comparative investigation of cell killing RBE variations along monoenergetic (pristine) and modulated (SOBP) beams using human normal and radioresistant cells with the aim to investigate the RBE dependence on LET and intrinsic radiosensitvity. METHODS AND MATERIALS Human fibroblasts (AG01522) and glioma (U87) cells were irradiated at 6 depth positions along pristine and modulated 62-MeV proton beams at the INFN-LNS (Catania, Italy). Cell killing RBE variations were measured using standard clonogenic assays and were further validated using Monte Carlo simulations and the local effect model (LEM). RESULTS We observed significant cell killing RBE variations along the proton beam path, particularly in the distal region showing strong dose dependence. Experimental RBE values were in excellent agreement with the LEM predicted values, indicating dose-averaged LET as a suitable predictor of proton biological effectiveness. Data were also used to validate a parameterized RBE model. CONCLUSIONS The predicted biological dose delivered to a tumor region, based on the variable RBE inferred from the data, varies significantly with respect to the clinically used constant RBE of 1.1. The significant RBE increase at the distal end suggests also a potential to enhance optimization of treatment modalities such as LET painting of hypoxic tumors. The study highlights the limitation of adoption of a constant RBE for proton therapy and suggests approaches for fast implementation of RBE models in treatment planning.


Molecular and Cellular Biochemistry | 2005

Antioxidant activity of fractionated extracts of rhizomes of high-altitude Podophyllum hexandrum: Role in radiation protection

Raman Chawla; Rajesh Arora; Raj Kumar; Ashok Sharma; Jagdish Prasad; S.P. Singh; Ravinder Sagar; Pankaj Chaudhary; Sandeep Kumar Shukla; Gurpreet Kaur; Rakesh Kumar Sharma; Satish Chander Puri; K.L. Dhar; G. Handa; Vinay Gupta; Ghulam Nabi Qazi

Whole extract of rhizomes of Podophyllum hexandrum has been reported earlier by our group to render whole-body radioprotection. High-altitude P. hexandrum (HAPH) was therefore fractionated using solvents of varying polarity (non-polar to polar) and the different fractions were designated as, n-hexane (HE), chloroform (CE), alcohol (AE), hydro-alcohol (HA) and water (WE). The total polyphenolic content (mg% of quercetin) was determined spectrophotometrically, while. The major constituents present in each fraction were identified and characterized using LC-APCI/MS/MS. In vitro screening of the individual fractions, rich in polyphenols and lignans, revealed several bioactivities of direct relevance to radioprotection e.g. metal-chelation activity, antioxidant activity, DNA protection, inhibition of radiation (250 Gy) and iron/ascorbate-induced lipid peroxidation (LPO). CE exhibited maximum protection to plasmid (pBR322) DNA in the plasmid relaxation assay (68.09% of SC form retention). It also showed maximal metal chelation activity (41.59%), evaluated using 2,2′-bipyridyl assay, followed by AE (31.25%), which exhibited maximum antioxidant potential (lowest absorption unit value: 0.0389± 0.00717) in the reducing power assay. AE also maximally inhibited iron/ascorbate-induced and radiation-induced LPO (99.76 and 92.249%, respectively, at 2000 μg/ml) in mouse liver homogenate. Under conditions of combined stress (radiation (250 Gy) + iron/ascorbate), at a concentration of 2000 μg/ml, HA exhibited higher percentage of inhibition (93.05%) of LPO activity. HA was found to be effective in significantly (p < 0.05) lowering LPO activity over a wide range of concentrations as compared to AE. The present comparative study indicated that alcoholic (AE) and hydro-alcoholic (HA) fractions are the most promising fractions, which can effectively tackle radiation-induced oxidative stress.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Graphene Nanoribbons as a Drug Delivery Agent for Lucanthone Mediated Therapy of Glioblastoma Multiforme

Sayan Mullick Chowdhury; Cassandra Surhland; Zina Sanchez; Pankaj Chaudhary; M.A. Suresh Kumar; Stephen Lee; Louis A. Peña; Michael J. Waring; Balaji Sitharaman; Mamta Naidu

We report use of PEG-DSPE coated oxidized graphene nanoribbons (O-GNR-PEG-DSPE) as agent for delivery of anti-tumor drug Lucanthone (Luc) into Glioblastoma Multiformae (GBM) cells targeting base excision repair enzyme APE-1 (Apurinic endonuclease-1). Lucanthone, an endonuclease inhibitor of APE-1, was loaded onto O-GNR-PEG-DSPEs using a simple non-covalent method. We found its uptake by GBM cell line U251 exceeding 67% and 60% in APE-1-overexpressing U251, post 24h. However, their uptake was ~38% and 29% by MCF-7 and rat glial progenitor cells (CG-4), respectively. TEM analysis of U251 showed large aggregates of O-GNR-PEG-DSPE in vesicles. Luc-O-GNR-PEG-DSPE was significantly toxic to U251 but showed little/no toxicity when exposed to MCF-7/CG-4 cells. This differential uptake effect can be exploited to use O-GNR-PEG-DSPEs as a vehicle for Luc delivery to GBM, while reducing nonspecific cytotoxicity to the surrounding healthy tissue. Cell death in U251 was necrotic, probably due to oxidative degradation of APE-1.


Molecular and Cellular Biochemistry | 2006

Radioprotective properties of apple polyphenols: an in vitro study.

Pankaj Chaudhary; Sandeep Kumar Shukla; I. Prem Kumar; I. Namita; Farhat Afrin; Rakesh Kumar Sharma

Present study was undertaken to evaluate the radioprotective ability of total polyphenols extracted from edible portion (epicarp and mesocarp) of apple. Prior administration of apple polyphenols to murine thymocytes significantly countered radiation induced DNA damage (evaluated by alkaline halo assay) and cell death (trypan blue exclusion method) in a dose dependent manner maximally at a concentration of 2 and 0.2 mg/ml respectively. Apple polyphenols in a dose dependent fashion inhibited both radiation or Fenton reaction mediated 2-deoxyribose (2-DR) degradation indicating its ability to scavenge hydroxyl radicals and this activity was found to be unaltered in presence of simulated gastric juice. Similarly apple polyphenols in a dose dependent fashion scavenged DPPH radicals (maximum 69% at 1 mg/ml), superoxide anions (maximum 88% at 2 mg/ml), reduced Fe3 + to Fe2 + (maximum at 1 mg/ml) and inhibited Fenton reaction mediated lipid peroxidation (maximum 66% at 1.5 mg/ml) further establishing its antioxidative properties. Studies carried out with plasmid DNA revealed the ability of apple polyphenols to inhibit radiation induced single as well as double strand breaks. The results clearly indicate that apple polyphenols have significant potential to protect cellular system from radiation induced damage and ability to scavenge free radicals might be playing an important role in its radioprotective manifestation.


PLOS ONE | 2011

Lucanthone and Its Derivative Hycanthone Inhibit Apurinic Endonuclease-1 (APE1) by Direct Protein Binding

Mamta Naidu; Rakhi Agarwal; Louis A. Peña; Luis Cunha; Mihaly Mezei; Min Shen; David M. Wilson; Yuan Liu; Zina Sanchez; Pankaj Chaudhary; Samuel H. Wilson; Michael J. Waring

Lucanthone and hycanthone are thioxanthenone DNA intercalators used in the 1980s as antitumor agents. Lucanthone is in Phase I clinical trial, whereas hycanthone was pulled out of Phase II trials. Their potential mechanism of action includes DNA intercalation, inhibition of nucleic acid biosyntheses, and inhibition of enzymes like topoisomerases and the dual function base excision repair enzyme apurinic endonuclease 1 (APE1). Lucanthone inhibits the endonuclease activity of APE1, without affecting its redox activity. Our goal was to decipher the precise mechanism of APE1 inhibition as a prerequisite towards development of improved therapeutics that can counteract higher APE1 activity often seen in tumors. The IC50 values for inhibition of APE1 incision of depurinated plasmid DNA by lucanthone and hycanthone were 5 µM and 80 nM, respectively. The KD values (affinity constants) for APE1, as determined by BIACORE binding studies, were 89 nM for lucanthone/10 nM for hycanthone. APE1 structures reveal a hydrophobic pocket where hydrophobic small molecules like thioxanthenones can bind, and our modeling studies confirmed such docking. Circular dichroism spectra uncovered change in the helical structure of APE1 in the presence of lucanthone/hycanthone, and notably, this effect was decreased (Phe266Ala or Phe266Cys or Trp280Leu) or abolished (Phe266Ala/Trp280Ala) when hydrophobic site mutants were employed. Reduced inhibition by lucanthone of the diminished endonuclease activity of hydrophobic mutant proteins (as compared to wild type APE1) supports that binding of lucanthone to the hydrophobic pocket dictates APE1 inhibition. The DNA binding capacity of APE1 was marginally inhibited by lucanthone, and not at all by hycanthone, supporting our hypothesis that thioxanthenones inhibit APE1, predominantly, by direct interaction. Finally, lucanthone-induced degradation was drastically reduced in the presence of short and long lived free radical scavengers, e.g., TRIS and DMSO, suggesting that the mechanism of APE1 breakdown may involve free radical-induced peptide bond cleavage.


International Journal of Radiation Oncology Biology Physics | 2016

Investigating the Implications of a Variable RBE on Proton Dose Fractionation Across a Clinical Pencil Beam Scanned Spread-Out Bragg Peak

Thomas I. Marshall; Pankaj Chaudhary; Anna Michaelidesová; Jana Vachelová; Marie Davídková; Vladimír Vondráček; Giuseppe Schettino; Kevin Prise

Purpose To investigate the clinical implications of a variable relative biological effectiveness (RBE) on proton dose fractionation. Using acute exposures, the current clinical adoption of a generic, constant cell killing RBE has been shown to underestimate the effect of the sharp increase in linear energy transfer (LET) in the distal regions of the spread-out Bragg peak (SOBP). However, experimental data for the impact of dose fractionation in such scenarios are still limited. Methods and Materials Human fibroblasts (AG01522) at 4 key depth positions on a clinical SOBP of maximum energy 219.65 MeV were subjected to various fractionation regimens with an interfraction period of 24 hours at Proton Therapy Center in Prague, Czech Republic. Cell killing RBE variations were measured using standard clonogenic assays and were further validated using Monte Carlo simulations and parameterized using a linear quadratic formalism. Results Significant variations in the cell killing RBE for fractionated exposures along the proton dose profile were observed. RBE increased sharply toward the distal position, corresponding to a reduction in cell sparing effectiveness of fractionated proton exposures at higher LET. The effect was more pronounced at smaller doses per fraction. Experimental survival fractions were adequately predicted using a linear quadratic formalism assuming full repair between fractions. Data were also used to validate a parameterized variable RBE model based on linear α parameter response with LET that showed considerable deviations from clinically predicted isoeffective fractionation regimens. Conclusions The RBE-weighted absorbed dose calculated using the clinically adopted generic RBE of 1.1 significantly underestimates the biological effective dose from variable RBE, particularly in fractionation regimens with low doses per fraction. Coupled with an increase in effective range in fractionated exposures, our study provides an RBE dataset that can be used by the modeling community for the optimization of fractionated proton therapy.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

Preclinical evaluation of gold-DTDTPA nanoparticles as theranostic agents in prostate cancer radiotherapy

Karl T. Butterworth; James R. Nicol; Mihaela Ghita; Soraia Rosa; Pankaj Chaudhary; Conor K. McGarry; H. McCarthy; Gloria Jimenez-Sanchez; Rana Bazzi; Stéphane Roux; Olivier Tillement; Jonathan A. Coulter; Kevin Prise

AIM Gold nanoparticles have attracted significant interest in cancer diagnosis and treatment. Herein, we evaluated the theranostic potential of dithiolated diethylenetriamine pentaacetic acid (DTDTPA) conjugated AuNPs (Au@DTDTPA) for CT-contrast enhancement and radiosensitization in prostate cancer. MATERIALS & METHODS In vitro assays determined Au@DTDTPA uptake, cytotoxicity, radiosensitizing potential and DNA damage profiles. Human PC3 xenograft tumor models were used to determine CT enhancement and radiation modulating effects in vivo. RESULTS Cells exposed to nanoparticles and radiation observed significant additional reduction in survival compared with radiation only. Au@DTDTPA produced a CT enhancement of 10% and a significant extension in tumor growth delay from 16.9 days to 38.3 compared with radiation only. CONCLUSION This study demonstrates the potential of Au@DTDTPA to enhance CT-image contrast and simultaneously increases the radiosensitivity of prostate tumors.


International Journal of Radiation Oncology Biology Physics | 2016

Variations in the Processing of DNA Double-Strand Breaks Along 60-MeV Therapeutic Proton Beams

Pankaj Chaudhary; Thomas I. Marshall; Frederick Currell; Andrzej Kacperek; Giuseppe Schettino; Kevin Prise

Purpose To investigate the variations in induction and repair of DNA damage along the proton path, after a previous report on the increasing biological effectiveness along clinically modulated 60-MeV proton beams. Methods and Materials Human skin fibroblast (AG01522) cells were irradiated along a monoenergetic and a modulated spread-out Bragg peak (SOBP) proton beam used for treating ocular melanoma at the Douglas Cyclotron, Clatterbridge Centre for Oncology, Wirral, Liverpool, United Kingdom. The DNA damage response was studied using the 53BP1 foci formation assay. The linear energy transfer (LET) dependence was studied by irradiating the cells at depths corresponding to entrance, proximal, middle, and distal positions of SOBP and the entrance and peak position for the pristine beam. Results A significant amount of persistent foci was observed at the distal end of the SOBP, suggesting complex residual DNA double-strand break damage induction corresponding to the highest LET values achievable by modulated proton beams. Unlike the directly irradiated, medium-sharing bystander cells did not show any significant increase in residual foci. Conclusions The DNA damage response along the proton beam path was similar to the response of X rays, confirming the low-LET quality of the proton exposure. However, at the distal end of SOBP our data indicate an increased complexity of DNA lesions and slower repair kinetics. A lack of significant induction of 53BP1 foci in the bystander cells suggests a minor role of cell signaling for DNA damage under these conditions.


Applied Microbiology and Biotechnology | 2007

Selective loss of lin genes from hexachlorocyclohexane-degrading Pseudomonas aeruginosa ITRC-5 under different growth conditions

Atul K. Singh; Pankaj Chaudhary; Ankit S. Macwan; Upendra N. Diwedi; Ashwani Kumar

The chlorinated insecticide γ-hexachlorocyclohexane (γ-HCH) is sequentially metabolized by the products of linA, linB, linC, linD, linE, and linF genes to β-ketoadipate, which is subsequently mineralized. Two or more copies of these genes are present in the bacterium Pseudomonas aeruginosa ITRC-5 that was isolated earlier by selective enrichment on technical-HCH. At least one copy of linA, linB, linC, linD, and possibly linE is lost from ITRC-5 upon its growth on γ-HCH. All the lin genes, however, are lost when the bacterium was grown in Luria–Bertani (LB) medium. The loss of lin genes is accompanied with the loss/rearrangement of insertion sequence IS6100 genes. Concomitant to the loss of lin genes, the degradation of HCH-isomers by “γ-HCH grown cells” is slower, when compared with “technical-HCH grown cells”, and is completely lost by “LB-grown cells”. The selective loss of lin genes during different growth conditions has not been reported before and is expected to help in understanding the dynamism of degradative genes.


Environmental Toxicology and Pharmacology | 2006

Cytotoxic and radioprotective effects of Podophyllum hexandrum.

Sandeep Kumar Shukla; Pankaj Chaudhary; Indracanti Prem Kumar; Farhat Afrin; S. C. Puri; Ghulam Nabi Qazi; Rakesh Kumar Sharma

Podophyllum hexandrum, a herb thriving in Himalayas has already been reported to exhibit antitumor and radioprotective properties. Present study was undertaken to unravel the possible mechanism responsible for the cytotoxic and radioprotective properties of REC-2001, a fraction isolated from the rhizome of P. hexandrum using murine peritoneal macrophages and plasmid DNA as model systems. Cell death, levels of intracellular reactive oxygen species (ROS) and apoptosis were studied employing trypan blue exclusion assay, dichlorofluorescein diacetate and DNA fragmentation assay, respectively. Superoxide anions, hydroxyl radicals and DNA damage were estimated following nitroblue tetrazolium, 2-deoxyribose degradation and plasmid DNA relaxation assays, respectively. Pre-irradiation administration of REC-2001 to peritoneal macrophages in the concentration range of 25-200μg/ml significantly reduced radiation induced ROS generation, DNA damage, apoptosis and cell killing in comparison to radiation control group indicating radioprotective potential. Studies with plasmid DNA indicated the ability of REC-2001 to inhibit 20Gy induced single and double strand breaks further supporting the antioxidative potential. However, REC-2001 in a dose-dependent fashion induced cell death, ROS and DNA fragmentation indicating the cytotoxic nature. REC-2001, in presence of 100μM copper sulfate, generated significant amount of hydroxyl radicals and superoxide anions indicating ability to act as a pro-oxidant in presence of metal ions. The superoxide anion generation was found to be sensitive to metal chelators like EDTA and deferoxamine mesylate (DFR). These results suggest that the ability of REC-2001 to act as a pro-oxidant in presence of metal ions and antioxidant in presence of free radicals might be responsible for cytotoxic and radioprotective properties.

Collaboration


Dive into the Pankaj Chaudhary's collaboration.

Top Co-Authors

Avatar

Kevin Prise

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Rakesh Kumar Sharma

Defence Research and Development Organisation

View shared research outputs
Top Co-Authors

Avatar

Jamboor K. Vishwanatha

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Schettino

National Physical Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sandeep Kumar Shukla

Defence Research and Development Organisation

View shared research outputs
Top Co-Authors

Avatar

Louis A. Peña

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mamta Naidu

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rutika Kokate

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Frederick Currell

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Sanjay Thamake

University of North Texas Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge