Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Arlotta is active.

Publication


Featured researches published by Paola Arlotta.


Nature Reviews Neuroscience | 2007

Neuronal subtype specification in the cerebral cortex

Bradley J. Molyneaux; Paola Arlotta; João R. L. Menezes; Jeffrey D. Macklis

In recent years, tremendous progress has been made in understanding the mechanisms underlying the specification of projection neurons within the mammalian neocortex. New experimental approaches have made it possible to identify progenitors and study the lineage relationships of different neocortical projection neurons. An expanding set of genes with layer and neuronal subtype specificity have been identified within the neocortex, and their function during projection neuron development is starting to be elucidated. Here, we assess recent data regarding the nature of neocortical progenitors, review the roles of individual genes in projection neuron specification and discuss the implications for progenitor plasticity.


Nature Biotechnology | 2011

Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription

Feng Zhang; Le Cong; Simona Lodato; Sriram Kosuri; George M. Church; Paola Arlotta

The ability to direct functional proteins to specific DNA sequences is a long-sought goal in the study and engineering of biological processes. Transcription activator-like effectors (TALEs) from Xanthomonas sp. are site-specific DNA-binding proteins that can be readily designed to target new sequences. Because TALEs contain a large number of repeat domains, it can be difficult to synthesize new variants. Here we describe a method that overcomes this problem. We leverage codon degeneracy and type IIs restriction enzymes to generate orthogonal ligation linkers between individual repeat monomers, thus allowing full-length, customized, repeat domains to be constructed by hierarchical ligation. We synthesized 17 TALEs that are customized to recognize specific DNA-binding sites, and demonstrate that they can specifically modulate transcription of endogenous genes (SOX2 and KLF4) in human cells.The ability to direct functional proteins to specific DNA sequences is a long-sought goal in the study and engineering of biological processes. Transcription activator–like effectors (TALEs) from Xanthomonas sp. are site-specific DNA-binding proteins that can be readily designed to target new sequences. Because TALEs contain a large number of repeat domains, it can be difficult to synthesize new variants. Here we describe a method that overcomes this problem. We leverage codon degeneracy and type IIs restriction enzymes to generate orthogonal ligation linkers between individual repeat monomers, thus allowing full-length, customized, repeat domains to be constructed by hierarchical ligation. We synthesized 17 TALEs that are customized to recognize specific DNA-binding sites, and demonstrate that they can specifically modulate transcription of endogenous genes (SOX2 and KLF4) in human cells.


Neuron | 2005

Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons

Bradley J. Molyneaux; Paola Arlotta; Tustomu Hirata; Masahiko Hibi; Jeffrey D. Macklis

The molecular mechanisms controlling the differentiation of neural progenitors into distinct subtypes of neurons during neocortical development are unknown. Here, we report that Fezl is required for the specification of corticospinal motor neurons and other subcerebral projection neurons, which are absent from Fezl null mutant neocortex. There is neither an increase in cell death in Fezl(-/-) cortex nor abnormalities in migration, indicating that the absence of subcerebral projection neurons is due to a failure in fate specification. In striking contrast, other neuronal populations in the same and other cortical layers are born normally. Overexpression of Fezl results in excess production of subcerebral projection neurons and arrested migration of these neurons in the germinal zone. These data indicate that Fezl plays a central role in the specification of corticospinal motor neurons and other subcerebral projection neurons, controlling early decisions regarding lineage-specific differentiation from neural progenitors.


eLife | 2013

Multiple knockout mouse models reveal lincRNAs are required for life and brain development

Martin Sauvageau; Loyal A. Goff; Simona Lodato; Boyan Bonev; Abigail F. Groff; Chiara Gerhardinger; Diana B. Sanchez-Gomez; Ezgi Hacisuleyman; Eric Li; Matthew Spence; Stephen C. Liapis; William Mallard; Michael A. Morse; Mavis R. Swerdel; Michael F D’Ecclessis; Jennifer C. Moore; Venus Lai; Guochun Gong; George D. Yancopoulos; David Frendewey; Manolis Kellis; Ronald P. Hart; David M. Valenzuela; Paola Arlotta; John L. Rinn

Many studies are uncovering functional roles for long noncoding RNAs (lncRNAs), yet few have been tested for in vivo relevance through genetic ablation in animal models. To investigate the functional relevance of lncRNAs in various physiological conditions, we have developed a collection of 18 lncRNA knockout strains in which the locus is maintained transcriptionally active. Initial characterization revealed peri- and postnatal lethal phenotypes in three mutant strains (Fendrr, Peril, and Mdgt), the latter two exhibiting incomplete penetrance and growth defects in survivors. We also report growth defects for two additional mutant strains (linc–Brn1b and linc–Pint). Further analysis revealed defects in lung, gastrointestinal tract, and heart in Fendrr−/− neonates, whereas linc–Brn1b−/− mutants displayed distinct abnormalities in the generation of upper layer II–IV neurons in the neocortex. This study demonstrates that lncRNAs play critical roles in vivo and provides a framework and impetus for future larger-scale functional investigation into the roles of lncRNA molecules. DOI: http://dx.doi.org/10.7554/eLife.01749.001


Neuron | 2008

SOX5 Controls the Sequential Generation of Distinct Corticofugal Neuron Subtypes

Tina Lai; Denis Jabaudon; Bradley J. Molyneaux; Eiman Azim; Paola Arlotta; João R. L. Menezes; Jeffrey D. Macklis

The molecular mechanisms controlling the development of distinct subtypes of neocortical projection neurons, and CNS neuronal diversity more broadly, are only now emerging. We report that the transcription factor SOX5 controls the sequential generation of distinct corticofugal neuron subtypes by preventing premature emergence of normally later-born corticofugal neurons. SOX5 loss-of-function causes striking overlap of the identities of the three principal sequentially born corticofugal neuron subtypes: subplate neurons, corticothalamic neurons, and subcerebral projection neurons. In Sox5(-/-) cortex, subplate neurons aberrantly develop molecular hallmarks and connectivity of subcerebral projection neurons; corticothalamic neurons are imprecisely differentiated, while differentiation of subcerebral projection neurons is accelerated. Gain-of-function analysis reinforces the critical role of SOX5 in controlling the sequential generation of corticofugal neurons--SOX5 overexpression at late stages of corticogenesis causes re-emergence of neurons with corticofugal features. These data indicate that SOX5 controls the timing of critical fate decisions during corticofugal neuron production and thus subtype-specific differentiation and neocortical neuron diversity.The molecular mechanisms controlling the development of distinct subtypes of neocortical projection neurons, and CNS neuronal diversity more broadly, are only now emerging. We report that the transcription factor SOX5 controls the sequential generation of distinct corticofugal neuron subtypes by preventing premature emergence of normally later-born corticofugal neurons. SOX5 loss-of-function causes striking overlap of the identities of the three principal sequentially born corticofugal neuron subtypes: subplate neurons, corticothalamic neurons, and subcerebral projection neurons. In Sox5(-/-) cortex, subplate neurons aberrantly develop molecular hallmarks and connectivity of subcerebral projection neurons; corticothalamic neurons are imprecisely differentiated, while differentiation of subcerebral projection neurons is accelerated. Gain-of-function analysis reinforces the critical role of SOX5 in controlling the sequential generation of corticofugal neurons--SOX5 overexpression at late stages of corticogenesis causes re-emergence of neurons with corticofugal features. These data indicate that SOX5 controls the timing of critical fate decisions during corticofugal neuron production and thus subtype-specific differentiation and neocortical neuron diversity.


Science | 2014

Distinct Profiles of Myelin Distribution Along Single Axons of Pyramidal Neurons in the Neocortex

Giulio Srubek Tomassy; Daniel R. Berger; Hsu-Hsin Chen; Narayanan Kasthuri; Kenneth J. Hayworth; Alessandro Vercelli; H. Sebastian Seung; Jeff W. Lichtman; Paola Arlotta

Patchy Insulation Myelin insulates neuronal axons such that their electrical signals travel faster and more efficiently. However, not all axons are myelinated equally. Tomassy et al. (p. 319; see the Perspective by Fields) obtained detailed images from two snippets of the adult mouse brain and generated three-dimensional reconstructions of individual neurons and their myelination patterns. The images show that some axons have long, unmyelinated stretches, which might offer sites for building new connections. Thus, myelination is not an all-or-none phenomenon but rather is a characteristic of what may be a specific dialogue between the neuron and the surrounding myelin-producing cells. Mouse neurons display different and distinctive patterns of myelination. [Also see Perspective by Fields] Myelin is a defining feature of the vertebrate nervous system. Variability in the thickness of the myelin envelope is a structural feature affecting the conduction of neuronal signals. Conversely, the distribution of myelinated tracts along the length of axons has been assumed to be uniform. Here, we traced high-throughput electron microscopy reconstructions of single axons of pyramidal neurons in the mouse neocortex and built high-resolution maps of myelination. We find that individual neurons have distinct longitudinal distribution of myelin. Neurons in the superficial layers displayed the most diversified profiles, including a new pattern where myelinated segments are interspersed with long, unmyelinated tracts. Our data indicate that the profile of longitudinal distribution of myelin is an integral feature of neuronal identity and may have evolved as a strategy to modulate long-distance communication in the neocortex.


The Journal of Neuroscience | 2008

Ctip2 Controls the Differentiation of Medium Spiny Neurons and the Establishment of the Cellular Architecture of the Striatum

Paola Arlotta; Bradley J. Molyneaux; Denis Jabaudon; Yutaka Yoshida; Jeffrey D. Macklis

Striatal medium spiny neurons (MSN) are critically involved in motor control, and their degeneration is a principal component of Huntingtons disease. We find that the transcription factor Ctip2 (also known as Bcl11b) is central to MSN differentiation and striatal development. Within the striatum, it is expressed by all MSN, although it is excluded from essentially all striatal interneurons. In the absence of Ctip2, MSN do not fully differentiate, as demonstrated by dramatically reduced expression of a large number of MSN markers, including DARPP-32, FOXP1, Chrm4, Reelin, MOR1 (μ-opioid receptor 1), glutamate receptor 1, and Plexin-D1. Furthermore, MSN fail to aggregate into patches, resulting in severely disrupted patch-matrix organization within the striatum. Finally, heterotopic cellular aggregates invade the Ctip2−/− striatum, suggesting a failure by MSN to repel these cells in the absence of Ctip2. This is associated with abnormal dopaminergic innervation of the mutant striatum and dramatic changes in gene expression, including dysregulation of molecules involved in cellular repulsion. Together, these data indicate that Ctip2 is a critical regulator of MSN differentiation, striatal patch development, and the establishment of the cellular architecture of the striatum.


Nature Cell Biology | 2013

Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo.

Caroline Rouaux; Paola Arlotta

Once programmed to acquire a specific identity and function, cells rarely change in vivo. Neurons of the mammalian central nervous system (CNS) in particular are a classic example of a stable, terminally differentiated cell type. With the exception of the adult neurogenic niches, where a limited set of neuronal subtypes continue to be generated throughout life, CNS neurons are born only during embryonic and early postnatal development. Once generated, neurons become permanently post-mitotic and do not change their identity for the lifespan of the organism. Here, we have investigated whether excitatory neurons of the neocortex can be instructed to directly reprogram their identity post-mitotically from one subtype into another, in vivo. We show that embryonic and early postnatal callosal projection neurons of layer II/III can be post-mitotically lineage reprogrammed into layer-V/VI corticofugal projection neurons following expression of the transcription factor encoded by Fezf2. Reprogrammed callosal neurons acquire molecular properties of corticofugal projection neurons and change their axonal connectivity from interhemispheric, intracortical projections to corticofugal projections directed below the cortex. The data indicate that during a window of post-mitotic development neurons can change their identity, acquiring critical features of alternative neuronal lineages.


The Journal of Neuroscience | 2009

Novel Subtype-Specific Genes Identify Distinct Subpopulations of Callosal Projection Neurons

Bradley J. Molyneaux; Paola Arlotta; Ryan Marie Fame; Jessica L. MacDonald; Kyle L. MacQuarrie; Jeffrey D. Macklis

Little is known about the molecular development and heterogeneity of callosal projection neurons (CPN), cortical commissural neurons that connect homotopic regions of the two cerebral hemispheres via the corpus callosum and that are critical for bilateral integration of cortical information. Here we report on the identification of a series of genes that individually and in combination define CPN and novel CPN subpopulations during embryonic and postnatal development. We used in situ hybridization analysis, immunocytochemistry, and retrograde labeling to define the layer-specific and neuron-type-specific distribution of these newly identified CPN genes across different stages of maturation. We demonstrate that a subset of these genes (e.g., Hspb3 and Lpl) appear specific to all CPN (in layers II/III and V–VI), whereas others (e.g., Nectin-3, Plexin-D1, and Dkk3) discriminate between CPN of the deep layers and those of the upper layers. Furthermore, the data show that several genes finely subdivide CPN within individual layers and appear to label CPN subpopulations that have not been described previously using anatomical or morphological criteria. The genes identified here likely reflect the existence of distinct programs of gene expression governing the development, maturation, and function of the newly identified subpopulations of CPN. Together, these data define the first set of genes that identify and molecularly subcategorize distinct populations of callosal projection neurons, often located in distinct subdivisions of the canonical cortical laminae.


Neuron | 2011

Excitatory Projection Neuron Subtypes Control the Distribution of Local Inhibitory Interneurons in the Cerebral Cortex

Simona Lodato; Caroline Rouaux; Kathleen B. Quast; Chanati Jantrachotechatchawan; Michèle Studer; Takao K. Hensch; Paola Arlotta

In the mammalian cerebral cortex, the developmental events governing the integration of excitatory projection neurons and inhibitory interneurons into balanced local circuitry are poorly understood. We report that different subtypes of projection neurons uniquely and differentially determine the laminar distribution of cortical interneurons. We find that in Fezf2⁻/⁻ cortex, the exclusive absence of subcerebral projection neurons and their replacement by callosal projection neurons cause distinctly abnormal lamination of interneurons and altered GABAergic inhibition. In addition, experimental generation of either corticofugal neurons or callosal neurons below the cortex is sufficient to recruit cortical interneurons to these ectopic locations. Strikingly, the identity of the projection neurons generated, rather than strictly their birthdate, determines the specific types of interneurons recruited. These data demonstrate that in the neocortex individual populations of projection neurons cell-extrinsically control the laminar fate of interneurons and the assembly of local inhibitory circuitry.

Collaboration


Dive into the Paola Arlotta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loyal A. Goff

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge