Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simona Lodato is active.

Publication


Featured researches published by Simona Lodato.


Nature Biotechnology | 2011

Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription

Feng Zhang; Le Cong; Simona Lodato; Sriram Kosuri; George M. Church; Paola Arlotta

The ability to direct functional proteins to specific DNA sequences is a long-sought goal in the study and engineering of biological processes. Transcription activator-like effectors (TALEs) from Xanthomonas sp. are site-specific DNA-binding proteins that can be readily designed to target new sequences. Because TALEs contain a large number of repeat domains, it can be difficult to synthesize new variants. Here we describe a method that overcomes this problem. We leverage codon degeneracy and type IIs restriction enzymes to generate orthogonal ligation linkers between individual repeat monomers, thus allowing full-length, customized, repeat domains to be constructed by hierarchical ligation. We synthesized 17 TALEs that are customized to recognize specific DNA-binding sites, and demonstrate that they can specifically modulate transcription of endogenous genes (SOX2 and KLF4) in human cells.The ability to direct functional proteins to specific DNA sequences is a long-sought goal in the study and engineering of biological processes. Transcription activator–like effectors (TALEs) from Xanthomonas sp. are site-specific DNA-binding proteins that can be readily designed to target new sequences. Because TALEs contain a large number of repeat domains, it can be difficult to synthesize new variants. Here we describe a method that overcomes this problem. We leverage codon degeneracy and type IIs restriction enzymes to generate orthogonal ligation linkers between individual repeat monomers, thus allowing full-length, customized, repeat domains to be constructed by hierarchical ligation. We synthesized 17 TALEs that are customized to recognize specific DNA-binding sites, and demonstrate that they can specifically modulate transcription of endogenous genes (SOX2 and KLF4) in human cells.


eLife | 2013

Multiple knockout mouse models reveal lincRNAs are required for life and brain development

Martin Sauvageau; Loyal A. Goff; Simona Lodato; Boyan Bonev; Abigail F. Groff; Chiara Gerhardinger; Diana B. Sanchez-Gomez; Ezgi Hacisuleyman; Eric Li; Matthew Spence; Stephen C. Liapis; William Mallard; Michael A. Morse; Mavis R. Swerdel; Michael F D’Ecclessis; Jennifer C. Moore; Venus Lai; Guochun Gong; George D. Yancopoulos; David Frendewey; Manolis Kellis; Ronald P. Hart; David M. Valenzuela; Paola Arlotta; John L. Rinn

Many studies are uncovering functional roles for long noncoding RNAs (lncRNAs), yet few have been tested for in vivo relevance through genetic ablation in animal models. To investigate the functional relevance of lncRNAs in various physiological conditions, we have developed a collection of 18 lncRNA knockout strains in which the locus is maintained transcriptionally active. Initial characterization revealed peri- and postnatal lethal phenotypes in three mutant strains (Fendrr, Peril, and Mdgt), the latter two exhibiting incomplete penetrance and growth defects in survivors. We also report growth defects for two additional mutant strains (linc–Brn1b and linc–Pint). Further analysis revealed defects in lung, gastrointestinal tract, and heart in Fendrr−/− neonates, whereas linc–Brn1b−/− mutants displayed distinct abnormalities in the generation of upper layer II–IV neurons in the neocortex. This study demonstrates that lncRNAs play critical roles in vivo and provides a framework and impetus for future larger-scale functional investigation into the roles of lncRNA molecules. DOI: http://dx.doi.org/10.7554/eLife.01749.001


Neuron | 2011

Excitatory Projection Neuron Subtypes Control the Distribution of Local Inhibitory Interneurons in the Cerebral Cortex

Simona Lodato; Caroline Rouaux; Kathleen B. Quast; Chanati Jantrachotechatchawan; Michèle Studer; Takao K. Hensch; Paola Arlotta

In the mammalian cerebral cortex, the developmental events governing the integration of excitatory projection neurons and inhibitory interneurons into balanced local circuitry are poorly understood. We report that different subtypes of projection neurons uniquely and differentially determine the laminar distribution of cortical interneurons. We find that in Fezf2⁻/⁻ cortex, the exclusive absence of subcerebral projection neurons and their replacement by callosal projection neurons cause distinctly abnormal lamination of interneurons and altered GABAergic inhibition. In addition, experimental generation of either corticofugal neurons or callosal neurons below the cortex is sufficient to recruit cortical interneurons to these ectopic locations. Strikingly, the identity of the projection neurons generated, rather than strictly their birthdate, determines the specific types of interneurons recruited. These data demonstrate that in the neocortex individual populations of projection neurons cell-extrinsically control the laminar fate of interneurons and the assembly of local inhibitory circuitry.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI

Giulio Srubek Tomassy; Elvira De Leonibus; Denis Jabaudon; Simona Lodato; Christian Alfano; Andrea Mele; Jeffrey D. Macklis; Michèle Studer

Transcription factors with gradients of expression in neocortical progenitors give rise to distinct motor and sensory cortical areas by controlling the area-specific differentiation of distinct neuronal subtypes. However, the molecular mechanisms underlying this area-restricted control are still unclear. Here, we show that COUP-TFI controls the timing of birth and specification of corticospinal motor neurons (CSMN) in somatosensory cortex via repression of a CSMN differentiation program. Loss of COUP-TFI function causes an area-specific premature generation of neurons with cardinal features of CSMN, which project to subcerebral structures, including the spinal cord. Concurrently, genuine CSMN differentiate imprecisely and do not project beyond the pons, together resulting in impaired skilled motor function in adult mice with cortical COUP-TFI loss-of-function. Our findings indicate that COUP-TFI exerts critical areal and temporal control over the precise differentiation of CSMN during corticogenesis, thereby enabling the area-specific functional features of motor and sensory areas to arise.


The Journal of Neuroscience | 2011

Loss of COUP-TFI Alters the Balance between Caudal Ganglionic Eminence- and Medial Ganglionic Eminence-Derived Cortical Interneurons and Results in Resistance to Epilepsy

Simona Lodato; Giulio Srubek Tomassy; Elvira De Leonibus; Yoryani G. Uzcategui; Gennaro Andolfi; Maria Armentano; Audrey Touzot; José María Gaztelu; Paola Arlotta; Liset Menendez de la Prida; Michèle Studer

In rodents, cortical interneurons originate from the medial ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) according to precise temporal schedules. The mechanisms controlling the specification of CGE-derived interneurons and their role in cortical circuitry are still unknown. Here, we show that COUP-TFI expression becomes restricted to the dorsal MGE and CGE at embryonic day 13.5 in the basal telencephalon. Conditional loss of function of COUP-TFI in subventricular precursors and postmitotic cells leads to a decrease of late-born, CGE-derived, VIP (vasoactive intestinal peptide)- and CR (calretinin)-expressing bipolar cortical neurons, compensated by the concurrent increase of early-born MGE-derived, PV (parvalbumin)-expressing interneurons. Strikingly, COUP-TFI mutants are more resistant to pharmacologically induced seizures, a phenotype that is dependent on GABAergic signaling. Together, our data indicate that COUP-TFI controls the delicate balance between MGE- and CGE-derived cortical interneurons by regulating intermediate progenitor divisions and ultimately affecting the activity of the cortical inhibitory circuitry.


Nature Neuroscience | 2014

Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons

Simona Lodato; Bradley J. Molyneaux; Emanuela Zuccaro; Loyal A. Goff; Hsu Hsin Chen; Wen Yuan; Alyssa Meleski; Emi Takahashi; Shaun Mahony; John L. Rinn; David K. Gifford; Paola Arlotta

The neocortex contains an unparalleled diversity of neuronal subtypes, each defined by distinct traits that are developmentally acquired under the control of subtype-specific and pan-neuronal genes. The regulatory logic that orchestrates the expression of these unique combinations of genes is unknown for any class of cortical neuron. Here, we report that Fezf2 is a selector gene able to regulate the expression of gene sets that collectively define mouse corticospinal motor neurons (CSMN). We find that Fezf2 directly induces the glutamatergic identity of CSMN via activation of Vglut1 (Slc17a7) and inhibits a GABAergic fate by repressing transcription of Gad1. In addition, we identify the axon guidance receptor EphB1 as a target of Fezf2 necessary to execute the ipsilateral extension of the corticospinal tract. Our data indicate that co-regulated expression of neuron subtype–specific and pan-neuronal gene batteries by a single transcription factor is one component of the regulatory logic responsible for the establishment of CSMN identity.


Annual Review of Cell and Developmental Biology | 2015

Generating Neuronal Diversity in the Mammalian Cerebral Cortex

Simona Lodato; Paola Arlotta

The neocortex is the part of the brain responsible for execution of higher-order brain functions, including cognition, sensory perception, and sophisticated motor control. During evolution, the neocortex has developed an unparalleled neuronal diversity, which still remains partly unclassified and unmapped at the functional level. Here, we broadly review the structural blueprint of the neocortex and discuss the current classification of its neuronal diversity. We then cover the principles and mechanisms that build neuronal diversity during cortical development and consider the impact of neuronal class-specific identity in shaping cortical connectivity and function.


Trends in Neurosciences | 2015

Cerebral cortex assembly: generating and reprogramming projection neuron diversity

Simona Lodato; Ashwin S. Shetty; Paola Arlotta

The mammalian cerebral cortex is responsible for the highest levels of associative, cognitive and motor functions. In the central nervous system (CNS) the cortex stands as a prime example of extreme neuronal diversity, broadly classified into excitatory projection neurons (PNs) and inhibitory interneurons (INs). We review here recent progress made in understanding the strategies and mechanisms that shape PN diversity during embryogenesis, and discuss how PN classes may be maintained, postnatally, for the life of the organism. In addition, we consider the intriguing possibility that PNs may be amenable to directed reprogramming of their class-specific features to allow enhanced cortical plasticity in the adult.


Science Progress | 2010

Development and regeneration of projection neuron subtypes of the cerebral cortex

Giulio Srubek Tomassy; Simona Lodato; Zachary Trayes-Gibson; Paola Arlotta

The idea of repairing damaged neuronal circuitry in the mammalian central nervous system (CNS) has challenged neuroscientists for centuries. This is mainly due to the notorious inability of neurons to regenerate and the unparalleled cellular diversity of the nervous system. In the mammalian cerebral cortex, one of the most complex areas of the CNS, multipotent neural stem and progenitor cells undergo progressive specification during development to generate the staggering variety of projection neuron subtypes that are found in the adult. How is this process orchestrated in the embryo? And, can developmental signals be used to regenerate projection neuron subtypes in the adult or in the dish? Here, we first provide an overview of the diversity and fate potential of neural progenitors of the cerebral cortex during development. Further, we discuss the plasticity of neural progenitors and the roles of intrinsic and extrinsic signals over progenitor fate. Finally, we discuss the relevance of developmental signals for efforts to direct the differentiation of pluripotent stem cells into specific types of cortical projection neurons for therapeutic benefit.


Neuron | 2013

A Sip of GABA for the Cerebral Cortex

Giulio Srubek Tomassy; Simona Lodato; Paola Arlotta

Cortical and striatal interneurons are both generated within the ventral telencephalon, but their migratory journey takes them to very different destinations. Two articles in this issue (van den Berge et al., 2013; McKinsey et al., 2013) add an important molecular component to our understanding of how, during development, interneurons reach the cerebral cortex.

Collaboration


Dive into the Simona Lodato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loyal A. Goff

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Elvira De Leonibus

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge