Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Caporali is active.

Publication


Featured researches published by Paola Caporali.


Journal of Neuroinflammation | 2012

A single intraperitoneal injection of endotoxin in rats induces long-lasting modifications in behavior and brain protein levels of TNF-α and IL-18

Paola Bossù; Debora Cutuli; Ilaria Palladino; Paola Caporali; Francesco Angelucci; Daniela Laricchiuta; Francesca Gelfo; Paola De Bartolo; Carlo Caltagirone; Laura Petrosini

BackgroundSystemic inflammation might cause neuronal damage and sustain neurodegenerative diseases and behavior impairment, with the participation of pro-inflammatory cytokines, like tumor necrosis factor (TNF)-α and interleukin (IL)-18. However, the potential contribution of these cytokines to behavioral impairment in the long-term period has not been fully investigated.MethodsWistar rats were treated with a single intraperitoneal injection of LPS (5 mg/kg) or vehicle. After 7 days and 10 months, the animal behavior was evaluated by testing specific cognitive functions, as mnesic, discriminative, and attentional functions, as well as anxiety levels. Contextually, TNF-α and IL-18 protein levels were measured by ELISA in defined brain regions (that is, frontal cortex, hippocampus, striatum, cerebellum, and hypothalamus).ResultsBehavioral testing demonstrated a specific and persistent cognitive impairment characterized by marked deficits in reacting to environment modifications, possibly linked to reduced motivational or attentional deficits. Concomitantly, LPS induced a TNF-α increase in the hippocampus and frontal cortex (from 7 days onward) and cerebellum (only at 10 months). Interestingly, LPS treatment enhanced IL-18 expression in these same areas only at 10 months after injection.ConclusionsOverall, these results indicate that the chronic neuroinflammatory network elicited by systemic inflammation involves a persistent participation of TNF-α accompanied by a differently regulated contribution of IL-18. This leads to speculation that, though with still unclear mechanisms, both cytokines might take part in long-lasting modifications of brain functions, including behavioral alteration.


Frontiers in Aging Neuroscience | 2014

n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice

Debora Cutuli; Paola De Bartolo; Paola Caporali; Daniela Laricchiuta; Francesca Foti; Maurizio Ronci; Claudia Rossi; Cristina Neri; Gianfranco Spalletta; Carlo Caltagirone; Stefano Farioli-Vecchioli; Laura Petrosini

As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA) exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogenesis, volume, neurodegeneration and metabolic correlates to verify n-3 PUFA neuroprotective effects in aging. To this aim 19 month-old mice were given n-3 PUFA mixture, or olive oil or no dietary supplement for 8 weeks during which hippocampal-dependent mnesic functions were tested. At the end of behavioral testing morphological and metabolic correlates were analyzed. n-3 PUFA supplemented aged mice exhibited better object recognition memory, spatial and localizatory memory, and aversive response retention, without modifications in anxiety levels in comparison to controls. These improved hippocampal cognitive functions occurred in the context of an enhanced cellular plasticity and a reduced neurodegeneration. In fact, n-3 PUFA supplementation increased hippocampal neurogenesis and dendritic arborization of newborn neurons, volume, neuronal density and microglial cell number, while it decreased apoptosis, astrocytosis and lipofuscin accumulation in the hippocampus. The increased levels of some metabolic correlates (blood Acetyl-L-Carnitine and brain n-3 PUFA concentrations) found in n-3 PUFA supplemented mice also pointed toward an effective neuroprotection. On the basis of the present results n-3 PUFA supplementation appears to be a useful tool in health promotion and cognitive decline prevention during aging.


Orphanet Journal of Rare Diseases | 2013

Monoclonal antibodies to 65kDa glutamate decarboxylase induce epitope specific effects on motor and cognitive functions in rats

Christiane S. Hampe; Laura Petrosini; Paola De Bartolo; Paola Caporali; Debora Cutuli; Daniela Laricchiuta; Francesca Foti; Jared Radtke; Veronika Vidova; Jérôme Honnorat; Mario Manto

BackgroundStiff Person Syndrome (SPS) is a rare autoimmune movement disorder characterized by the presence of autoantibodies specific to the smaller isoform of glutamate decarboxylase (GAD65). A pathological role of these antibodies has been suggested by their capacity to inhibit GAD65 enzyme activity and by the observation that rats receiving cerebellar injections of GAD65Ab showed cerebellar motor hyperexcitability. To assess the effect of epitope-specific GAD65Ab on cognitive and motor functions, we conducted behavioral experiments in rats that received cerebellar injections with two distinct monoclonal GAD65Ab (b96.11 and b78).MethodsRats received three injections of GAD65Ab b96.11 (5 or 7 μg), GAD65Ab b78 (5 or 7 μg), or saline at the level of three cerebellar nuclei. Animals were submitted to neurological evaluation and Morris Water Maze (MWM) test. Cellular internalization of GAD65Ab was analyzed by Flow Cytometry, Fluorescence and Bright Field microscopy.ResultsMonoclonal GAD65Ab induced dose-dependent and epitope-specific effects on motor and cognitive functions. Injections of the higher dose altered motor and spatial procedural behaviors, while the lower dose induced only modest cerebellar motor symptoms and did not affect MWM performances. While b96.11 provoked immediate severe effects, which rapidly decreased, b78 induced moderate but prolonged effects. Both GAD65Ab were taken up by live cells in a dose-dependent manner.ConclusionsOur findings support the hypothesis that epitope-specific GAD65Ab induce cerebellar dysfunction impairing motor and procedural abilities. This is the first demonstration of a critical role of cerebellar nuclei GAD65 enzyme in procedural spatial functions.


Alzheimer's Research & Therapy | 2013

Neuroprotective effects of donepezil against cholinergic depletion

Debora Cutuli; Paola De Bartolo; Paola Caporali; Anna Maria Tartaglione; Diego Oddi; Francesca R. D’Amato; Annalisa Nobili; Marcello D’Amelio; Laura Petrosini

IntroductionIntraparenchymal injections of the immunotoxin 192-IgG-saporin into medial septum and nucleus basalis magnocellularis causes a selective depletion of basal forebrain cholinergic neurons. Thus, it represents a valid model to mimic a key component of the cognitive deficits associated with aging and dementia. Here we administered donepezil, a potent acetylcholinesterase inhibitor developed for treating Alzheimer’s disease, 15 days before 192-IgG-saporin injection, and thus we examined donepezil effects on neurodegeneration and cognitive deficits.MethodsCaspase-3 activity and cognitive performances of lesioned rats pre-treated with donepezil or saline were analyzed and compared to the outcomes obtained in pre-treated sham-lesioned rats.ResultsCholinergic depletion increased hippocampal and neocortical caspase-3 activity and impaired working memory, spatial discrimination, social novelty preference, and ultrasonic vocalizations, without affecting anxiety levels and fear conditioning. In lesioned animals, donepezil pre-treatment reduced hippocampal and neocortical caspase-3 activity and improved working memory and spatial discrimination performances and partially rescued ultrasonic vocalizations, without preventing social novelty alterations.ConclusionsPresent data indicate that donepezil pre-treatment exerts beneficial effects on behavioral deficits induced by cholinergic depletion, attenuating the concomitant hippocampal and neocortical neurodegeneration.


Frontiers in Behavioral Neuroscience | 2014

Pre-reproductive maternal enrichment influences offspring developmental trajectories: motor behavior and neurotrophin expression

Paola Caporali; Debora Cutuli; Francesca Gelfo; Daniela Laricchiuta; Francesca Foti; Paola De Bartolo; Laura Mancini; Francesco Angelucci; Laura Petrosini

Environmental enrichment is usually applied immediately after weaning or in adulthood, with strong effects on CNS anatomy and behavior. To examine the hypothesis that a pre-reproductive environmental enrichment of females could affect the motor development of their offspring, female rats were reared in an enriched environment from weaning to sexual maturity, while other female rats used as controls were reared under standard conditions. Following mating with standard-reared males, all females were housed individually. To evaluate the eventual transgenerational influence of positive pre-reproductive maternal experiences, postural and motor development of male pups was analyzed from birth to weaning. Moreover, expression of Brain Derived Neurotrophic Factor and Nerve Growth Factor in different brain regions was evaluated at birth and weaning. Pre-reproductive environmental enrichment of females affected the offspring motor development, as indicated by the earlier acquisition of complex motor abilities displayed by the pups of enriched females. The earlier acquisition of motor abilities was associated with enhanced neurotrophin levels in striatum and cerebellum. In conclusion, maternal positive experiences were transgenerationally transmitted, and influenced offspring phenotype at both behavioral and biochemical levels.


Frontiers in Aging Neuroscience | 2016

Effects of Omega-3 Fatty Acid Supplementation on Cognitive Functions and Neural Substrates: A Voxel-Based Morphometry Study in Aged Mice

Debora Cutuli; Marco Pagani; Paola Caporali; Alberto Galbusera; Daniela Laricchiuta; Francesca Foti; Cristina Neri; Gianfranco Spalletta; Carlo Caltagirone; Laura Petrosini; Alessandro Gozzi

Human and experimental studies have revealed putative neuroprotective and pro-cognitive effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) in aging, evidencing positive correlations between peripheral n-3 PUFA levels and regional grey matter (GM) volume, as well as negative correlations between dietary n-3 PUFA levels and cognitive deficits. We recently showed that n-3 PUFA supplemented aged mice exhibit better hippocampal-dependent mnesic functions, along with enhanced cellular plasticity and reduced neurodegeneration, thus supporting a role of n-3 PUFA supplementation in preventing cognitive decline during aging. To corroborate these initial results and develop new evidence on the effects of n-3 PUFA supplementation on brain substrates at macro-scale level, here we expanded behavioral analyses to the emotional domain (anxiety and coping skills), and carried out a fine-grained regional GM volumetric mapping by using high-resolution MRI-based voxel-based morphometry. The behavioral effects of 8 week n-3 PUFA supplementation were measured on cognitive (discriminative, spatial and social) and emotional (anxiety and coping) abilities of aged (19 month-old at the onset of study) C57B6/J mice. n-3 PUFA supplemented mice showed better mnesic performances as well as increased active coping skills. Importantly, these effects were associated with enlarged regional hippocampal, retrosplenial and prefrontal GM volumes, and with increased post mortem n-3 PUFA brain levels. These findings indicate that increased dietary n-3 PUFA intake in normal aging can improve fronto-hippocampal GM structure and function, an effect present also when the supplementation starts at late age. Our data are consistent with a protective role of n-3 PUFA supplementation in counteracting cognitive decline, emotional dysfunctions and brain atrophy.


Acta neuropathologica communications | 2016

Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis.

Paola Caporali; Francesco Bruno; Giampiero Palladino; Jessica Dragotto; Laura Petrosini; Franco Mangia; Robert P. Erickson; Sonia Canterini; Maria Teresa Fiorenza

Niemann-Pick type C1 (NPC1) disease is a lysosomal storage disorder caused by defective intracellular trafficking of exogenous cholesterol. Purkinje cell (PC) degeneration is the main sign of cerebellar dysfunction in both NPC1 patients and animal models. It has been recently shown that a significant decrease in Sonic hedgehog (Shh) expression reduces the proliferative potential of granule neuron precursors in the developing cerebellum of Npc1−/− mice. Pursuing the hypothesis that this developmental defect translates into functional impairments, we have assayed Npc1-deficient pups belonging to the milder mutant mouse strain Npc1nmf164 for sensorimotor development from postnatal day (PN) 3 to PN21. Npc1nmf164/ Npc1nmf164 pups displayed a 2.5-day delay in the acquisition of complex motor abilities compared to wild-type (wt) littermates, in agreement with the significant disorganization of cerebellar cortex cytoarchitecture observed between PN11 and PN15. Compared to wt, Npc1nmf164 homozygous mice exhibited a poorer morphological differentiation of Bergmann glia (BG), as indicated by thicker radial shafts and less elaborate reticular pattern of lateral processes. Also BG functional development was defective, as indicated by the significant reduction in GLAST and Glutamine synthetase expression. A reduced VGluT2 and GAD65 expression also indicated an overall derangement of the glutamatergic/GABAergic stimulation that PCs receive by climbing/parallel fibers and basket/stellate cells, respectively. Lastly, Npc1-deficiency also affected oligodendrocyte differentiation as indicated by the strong reduction of myelin basic protein. Two sequential 2-hydroxypropyl-β-cyclodextrin administrations at PN4 and PN7 counteract these defects, partially preventing functional impairment of BG and fully restoring the normal patterns of glutamatergic/GABAergic stimulation to PCs.These findings indicate that in Npc1nmf164 homozygous mice the derangement of synaptic connectivity and dysmyelination during cerebellar morphogenesis largely anticipate motor deficits that are typically observed during adulthood.


Frontiers in Behavioral Neuroscience | 2015

Interaction does count: A cross-fostering study on transgenerational effects of pre-reproductive maternal enrichment

Paola Caporali; Debora Cutuli; Francesca Gelfo; Daniela Laricchiuta; Francesca Foti; Paola De Bartolo; Francesco Angelucci; Laura Petrosini

Pre-reproductive environmental enrichment of female rats influences sensorimotor development and spatial behavior of the offspring, possibly through the changed maternal nurturing. Nevertheless, maternal care could be not the solely responsible for changing offspring developmental trajectories. To disentangle the specific contribution to the transgenerational inheritance of pre- and post-natal factors, a cross-fostering study was performed. Female rats were reared in an enriched environment from weaning to sexual maturity, while control female rats were reared under standard conditions. Following mating with standard-reared males, all females were housed individually. Immediately after delivery, in- or cross-fostering manipulations were performed so that any foster dams received pups born to another dam of the same (in-fostering) or the opposite (cross-fostering) pre-reproductive rearing condition. In lactating dams maternal care and nesting activities were assessed, while in their male pups spatial abilities were assessed through Morris Water Maze (MWM) test at post-natal day 45. Moreover, the expression of Brain-Derived-Neurotrophic-Factor (BDNF) was evaluated in the hippocampus and frontal cortex of dams and pups at weaning. Pre-reproductive maternal environmental enrichment, followed by adoption procedures, loosened its potential in modifying maternal care and offspring developmental trajectories, as indicated by the lack of differences between in-fostered groups of dams and pups. In addition, enriched dams rearing standard pups showed the least complex maternal repertoire (the highest sniffing duration and the lowest nest quality), and their pups showed a reduced spatial learning in the MWM. Nevertheless, pre-reproductive maternal enrichment kept influencing neurotrophic pattern, with enriched dams expressing increased frontal BDNF levels (regardless of the kind of fostered pups), and their offspring expressing increased hippocampal BDNF levels. The present findings enlighten the crucial importance of the early mother-pups interactions in influencing maternal care and offspring phenotype, with the enriched dam-standard pups couple resulting in the most maladaptive encounter. Our study thus sustains that the bidirectional interactions between mother and pups are able to deeply shape offspring phenotype.


Frontiers in Behavioral Neuroscience | 2017

Influence of Pre-reproductive Maternal Enrichment on Coping Response to Stress and Expression of c-Fos and Glucocorticoid Receptors in Adolescent Offspring

Debora Cutuli; Erica Berretta; Greta Pasqualini; Paola De Bartolo; Paola Caporali; Daniela Laricchiuta; Patricia Sampedro-Piquero; Francesca Gelfo; Matteo Pesoli; Francesca Foti; Azucena Begega; Laura Petrosini

Environmental enrichment (EE) is an experimental setting broadly used for investigating the effects of complex social, cognitive, and sensorimotor stimulations on brain structure and function. Recent studies point out that parental EE experience, even occurring in the pre-reproductive phase, affects neural development and behavioral trajectories of the offspring. In the present study we investigated the influences of pre-reproductive EE of female rats on maternal behavior and adolescent male offsprings coping response to an inescapable stressful situation after chronic social isolation. For this purpose female Wistar rats were housed from weaning to breeding age in enriched or standard environments. Subsequently, all females were mated and housed in standard conditions until offspring weaning. On the first post partum day (ppd 1), mother-pup interactions in undisturbed conditions were recorded. Further, after weaning the male pups were reared for 2 weeks under social isolation or in standard conditions, and then submitted or not to a single-session Forced Swim Test (FST). Offsprings neuronal activation and plastic changes were identified by immunohistochemistry for c-Fos and glucocorticoid receptors (GRs), and assessed by using stereological analysis. The biochemical correlates were measured in the hippocampus, amygdala and cingulate cortex, structures involved in hypothalamic-pituitary-adrenocortical axis regulation. Enriched dams exhibited increased Crouching levels in comparison to standard reared dams. In the offspring of both kinds of dams, social isolation reduced body weight, decreased Immobility, and increased Swimming during FST. Moreover, isolated offspring of enriched dams exhibited higher levels of Climbing in comparison to controls. Interestingly, in the amygdala of both isolated and control offspring of enriched dams we found a lower number of c-Fos immunopositive cells in response to FST and a higher number of GRs in comparison to the offspring of standard dams. These results highlight the profound influence of a stressful condition, such as the social isolation, on the brain of adolescent rats, and underline intergenerational effects of maternal experiences in regulating the offspring response to stress.


Frontiers in Behavioral Neuroscience | 2018

Pre-reproductive parental enriching experiences influence progeny’s developmental trajectories

Debora Cutuli; Erica Berretta; Daniela Laricchiuta; Paola Caporali; Francesca Gelfo; Laura Petrosini

While the positive effects of environmental enrichment (EE) applied after weaning, in adulthood, during aging, or even in the presence of brain damage have been widely described, the transgenerational effects of pre-reproductive EE have been less examined. And yet, this issue is remarkable given that parental environmental experience may imprint offspring’s phenotype over generations through many epigenetic processes. Interactions between individual and environment take place lifelong even before conception. In fact, the environment pre-reproductively experienced by the mother and/or the father exerts a substantial impact on neural development and motor and cognitive performances of the offspring, even if not directly exposed to social, cognitive, physical and/or motor enrichment. Furthermore, pre-reproductive parental enrichment exerts a transgenerational impact on coping response to stress as well as on the social behavior of the offspring. Among the effects of pre-reproductive parental EE, a potentiation of the maternal care and a decrease in global methylation levels in the frontal cortex and hippocampus of the progeny have been described. Finally, pre-reproductive EE modifies different pathways of neuromodulation in the brain of the offspring (involving brain-derived neurotrophic factor, oxytocin and glucocorticoid receptors). The present review highlights the importance of pre-reproductive parental enrichment in altering the performances not only of animals directly experiencing it, but also of their progeny, thus opening the way to new hypotheses on the inheritance mechanisms of behavioral traits.

Collaboration


Dive into the Paola Caporali's collaboration.

Top Co-Authors

Avatar

Laura Petrosini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Debora Cutuli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola De Bartolo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Francesca Foti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Francesca Gelfo

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Caltagirone

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Erica Berretta

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Jessica Dragotto

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge