Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Cremonesi is active.

Publication


Featured researches published by Paola Cremonesi.


Journal of Dairy Science | 2009

Pathogen detection in milk samples by ligation detection reaction-mediated universal array method

Paola Cremonesi; G. Pisoni; Marco Severgnini; Clarissa Consolandi; P. Moroni; M. Raschetti; Bianca Castiglioni

This paper describes a new DNA chip, based on the use of a ligation detection reaction coupled to a universal array, developed to detect and analyze, directly from milk samples, microbial pathogens known to cause bovine, ovine, and caprine mastitis or to be responsible for foodborne intoxication or infection, or both. Probes were designed for the identification of 15 different bacterial groups: Staphylococcus aureus, Streptococcus agalactiae, nonaureus staphylococci, Streptococcus bovis, Streptococcus equi, Streptococcus canis, Streptococcus dysgalactiae, Streptococcus parauberis, Streptococcus uberis, Streptococcus pyogenes, Mycoplasma spp., Salmonella spp., Bacillus spp., Campylobacter spp., and Escherichia coli and related species. These groups were identified based on the 16S rRNA gene. For microarray validation, 22 strains from the American Type Culture Collection or other culture collections and 50 milk samples were tested. The results demonstrated high specificity, with sensitivity as low as 6 fmol. Moreover, the ligation detection reaction-universal array assay allowed for the identification of Mycoplasma spp. in a few hours, avoiding the long incubation times of traditional microbiological identification methods. The universal array described here is a versatile tool able to identify milk pathogens efficiently and rapidly.


BMC Genomics | 2011

Strengthening insights into host responses to mastitis infection in ruminants by combining heterogeneous microarray data sources

Sem Genini; Bouabid Badaoui; Gert Sclep; Stephen Bishop; D. Waddington; Marie-Helene Pinard van Der Laan; Christophe Klopp; Cédric Cabau; Hans-Martin Seyfert; Wolfram Petzl; Kirsty Jensen; Elizabeth Glass; Astrid de Greeff; Hilde E. Smith; Mari A. Smits; Ingrid Olsaker; Guro Margrethe Boman; G. Pisoni; P. Moroni; Bianca Castiglioni; Paola Cremonesi; Marcello Del Corvo; Eliane Foulon; Gilles Foucras; Rachel Rupp; Elisabetta Giuffra

BackgroundGene expression profiling studies of mastitis in ruminants have provided key but fragmented knowledge for the understanding of the disease. A systematic combination of different expression profiling studies via meta-analysis techniques has the potential to test the extensibility of conclusions based on single studies. Using the program Pointillist, we performed meta-analysis of transcription-profiling data from six independent studies of infections with mammary gland pathogens, including samples from cattle challenged in vivo with S. aureus, E. coli, and S. uberis, samples from goats challenged in vivo with S. aureus, as well as cattle macrophages and ovine dendritic cells infected in vitro with S. aureus. We combined different time points from those studies, testing different responses to mastitis infection: overall (common signature), early stage, late stage, and cattle-specific.ResultsIngenuity Pathway Analysis of affected genes showed that the four meta-analysis combinations share biological functions and pathways (e.g. protein ubiquitination and polyamine regulation) which are intrinsic to the general disease response. In the overall response, pathways related to immune response and inflammation, as well as biological functions related to lipid metabolism were altered. This latter observation is consistent with the milk fat content depression commonly observed during mastitis infection. Complementarities between early and late stage responses were found, with a prominence of metabolic and stress signals in the early stage and of the immune response related to the lipid metabolism in the late stage; both mechanisms apparently modulated by few genes, including XBP1 and SREBF1.The cattle-specific response was characterized by alteration of the immune response and by modification of lipid metabolism. Comparison of E. coli and S. aureus infections in cattle in vivo revealed that affected genes showing opposite regulation had the same altered biological functions and provided evidence that E. coli caused a stronger host response.ConclusionsThis meta-analysis approach reinforces previous findings but also reveals several novel themes, including the involvement of genes, biological functions, and pathways that were not identified in individual studies. As such, it provides an interesting proof of principle for future studies combining information from diverse heterogeneous sources.


Veterinary Microbiology | 2015

Methicillin-resistant Staphylococcus aureus (MRSA) is associated with low within-herd prevalence of intra-mammary infections in dairy cows: Genotyping of isolates

M. Luini; Paola Cremonesi; Giada Magro; V. Bianchini; Giulietta Minozzi; Bianca Castiglioni; Renata Piccinini

Staphylococcus aureus is one of the most common mastitis-causing pathogens worldwide. In the last decade, livestock-associated methicillin-resistant S. aureus (LA-MRSA) infections have been described in several species, included the bovines. Hence, this paper investigates the diffusion of MRSA within Italian dairy herds; the strains were further characterized using a DNA microarray, which detects 330 different sequences, including the methicillin-resistance genes mecA and mecC and SCCmec typing. The analysis of overall patterns allows the assignment to Clonal Complexes (CC). Overall 163 S. aureus isolates, collected from quarter milk samples in 61 herds, were tested. MRSA strains were further processed using spa typing. Fifteen strains (9.2%), isolated in 9 herds (14.75%), carried mecA, but none harboured mecC. MRSA detection was significantly associated (P<0.011) with a within-herd prevalence of S. aureus intra-mammary infections (IMI) ≤5%. Ten MRSA strains were assigned to CC398, the remaining ones to CC97 (n=2), CC1 (n=2) or CC8 (n=1). In 3 herds, MRSA and MSSA co-existed: CC97-MRSA with CC398-MSSA, CC1-MRSA with CC8-MSSA and CC398-MRSA with CC126-MSSA. The results of spa typing showed an overall similar profile of the strains belonging to the same CC: t127-CC1, t1730-CC97, t899 in 8 out of 10 CC398. In the remaining 2 isolates a new spa type, t14644, was identified. The single CC8 was a t3092. The SCCmec cassettes were classified as type IV, type V or type IV/V composite. All or most strains harboured the genes encoding the β-lactamase operon and the tetracycline resistance. Streptogramin resistance gene was related to CC398. Enterotoxin and leukocidin genes were carried only by CC1, CC8 and CC97-MRSA. The persistence of MRSA clones characterized by broader host range, in epidemiologically unrelated areas and in dairy herds with low prevalence of S. aureus IMI, might enhance the risk for adaptation to human species.


Journal of Dairy Research | 2012

Identification of Clostridium beijerinckii, Cl. butyricum, Cl. sporogenes, Cl. tyrobutyricum isolated from silage, raw milk and hard cheese by a multiplex PCR assay.

Paola Cremonesi; Laura Vanoni; Tiziana Silvetti; Stefano Morandi; Milena Brasca

Late blowing, caused by the outgrowth of clostridial spores present in raw milk and originating from silage, can create considerable product loss, especially in the production of hard and semi-hard cheeses. The conventional method for the isolation of Clostridium spp. from cheeses with late-blowing symptoms is very complicated and the identification of isolates is problematic. The aim of this work was the development of a multiplex PCR method for the detection of the main dairy-related clostridia such as: Cl. beijerinckii, Cl. butyricum, Cl. sporogenes, Cl. tyrobutyricum. Samples derived from silage, raw milk and hard cheese were analysed by the most probable number (MPN) enumeration. Forty-four bacterial strains isolated from gas positive tubes were used to check the reliability of the multiplex PCR assay. The specificity of the primers was tested by individually analysing each primer pair and the primer pair combined in the multiplex PCR. It was interesting to note that the samples not identified by the multiplex PCR assay were amplified by V2-V3 16S rRNA primer pair and the sequencing revealed the aligned 16S rRNA sequences to be Paenibacillus and Bacillus spp. This new molecular assay provides a simple promising alternative to traditional microbiological methods for a rapid, sensitive detection of clostridia in dairy products.


BMC Genomics | 2012

Response of the goat mammary gland to infection with Staphylococcus aureus revealed by gene expression profiling in milk somatic and white blood cells

Paola Cremonesi; Rossana Capoferri; G. Pisoni; Marcello Del Corvo; Francesco Strozzi; Rachel Rupp; Hugues Caillat; Paola Modesto; P. Moroni; John L. Williams; Bianca Castiglioni; Alessandra Stella

BackgroundS. aureus is one of the main pathogens responsible for the intra-mammary infection in dairy ruminants. Although much work has been carried out to understand the complex physiological and cellular events that occur in the mammary gland in response to S. aureus, the protective mechanisms are still poorly understood. The objectives of the present study were to investigate gene expression during the early response of the goat mammary gland to an experimental challenge with S. aureus, in order to better understand the local and systemic response and to compare them in two divergent lines of goat selected for high and low milk somatic cell scores.ResultsNo differences in gene expression were found between high and low SCS (Somatic Cells Score) selection lines. Analysing the two groups together, an expression of 300 genes were found to change from T0 before infection, and T4 at 24 hours and T5 at 30 hours following challenge. In blood derived white blood cells 8 genes showed increased expression between T0 and T5 and 1 gene has reduced expression. The genes showing the greatest increase in expression following challenge (5.65 to 3.16 fold change) play an important role in (i) immune and inflammatory response (NFKB1, TNFAIP6, BASP1, IRF1, PLEK, BATF3); (ii) the regulation of innate resistance to pathogens (PTX3); and (iii) the regulation of cell metabolism (CYTH4, SLC2A6, ARG2). The genes with reduced expression (−1.5 to −2.5 fold) included genes involved in (i) lipid metabolism (ABCG2, FASN), (ii) chemokine, cytokine and intracellular signalling (SPPI), and (iii) cell cytoskeleton and extracellular matrix (KRT19).ConclusionsAnalysis of genes with differential expression following infection showed an inverse relationship between immune response and lipid metabolism in the early response of the mammary gland to the S. aureus challenge. PTX3 showed a large change in expression in both milk and blood, and is therefore a candidate for further studies on immune response associated with mastitis.


Nucleic Acids Research | 2009

ORMA: a tool for identification of species-specific variations in 16S rRNA gene and oligonucleotides design

Marco Severgnini; Paola Cremonesi; Clarissa Consolandi; Giada Caredda; Gianluca De Bellis; Bianca Castiglioni

16S rRNA gene is one of the preferred targets for resolving species phylogenesis issues in microbiological-related contexts. However, the identification of single-nucleotide variations capable of distinguishing a sequence among a set of homologous ones can be problematic. Here we present ORMA (Oligonucleotide Retrieving for Molecular Applications), a set of scripts for discriminating positions search and for performing the selection of high-quality oligonucleotide probes to be used in molecular applications. Two assays based on Ligase Detection Reaction (LDR) are presented. First, a new set of probe pairs on cyanobacteria 16S rRNA sequences of 18 different species was compared to that of a previous study. Then, a set of LDR probe pairs for the discrimination of 13 pathogens contaminating bovine milk was evaluated. The software determined more than 100 candidate probe pairs per dataset, from more than 300 16S rRNA sequences, in less than 5 min. Results demonstrated how ORMA improved the performance of the LDR assay on cyanobacteria, correctly identifying 12 out of 14 samples, and allowed the perfect discrimination among the 13 milk pathogenic-related species. ORMA represents a significant improvement from other contexts where enzyme-based techniques have been employed on already known mutations of a single base or on entire subsequences.


Frontiers in Microbiology | 2013

Genome sequence and analysis of Lactobacillus helveticus

Paola Cremonesi; S. Chessa; Bianca Castiglioni

The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of Lactobacillus helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE) inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract. As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones.


International Journal of Systematic and Evolutionary Microbiology | 2012

Enterococcus lactis sp. nov., from Italian raw milk cheeses

Stefano Morandi; Paola Cremonesi; Milena Povolo; Milena Brasca

Ten atypical Enterococcus strains were isolated from Italian raw milk cheeses. The 16S rRNA gene, phenylalanyl-tRNA synthase alpha subunit (pheS), RNA polymerase alpha subunit (rpoA) and the 16S-23S rRNA intergenic transcribed spacer (ITS) sequences, randomly amplified polymorphic DNA (RAPD) PCR and the phenotypic properties revealed that the isolates represent a novel enterococcal species. On the basis of 16S rRNA gene sequence analysis, the isolates were closely related to Enterococcus hirae ATCC 8043(T), Enterococcus durans CECT 411(T) and Enterococcus faecium ATCC 19434(T), with 98.8, 98.9 and 99.4% sequence similarity, respectively. On the basis of sequence analysis of the housekeeping gene pheS, the reference strain, BT159(T), occupied a position separate from E. faecium LMG 16198. The group of isolates could be easily differentiated from recognized species of the genus Enterococcus by 16S-23S rRNA ITS analysis, RAPD-PCR and phenotypic characteristics. The name Enterococcus lactis sp. nov. is proposed, with BT159(T) ( = DSM 23655(T) = LMG 25958(T)) as the type strain.


Food Microbiology | 2014

Development of 23 individual TaqMan® real-time PCR assays for identifying common foodborne pathogens using a single set of amplification conditions

Paola Cremonesi; Laura Francesca Pisani; Cristina Lecchi; Fabrizio Ceciliani; Pieranna Martino; Armando Sánchez Bonastre; Avo Karus; Claudia Balzaretti; Blanca Castiglioni

Most of the acute intestinal diseases are caused by foodborne pathogens with infants and elderly people being at major risk. The aim of this study was to develop a procedure to simultaneously detect 20 foodborne pathogens in complex alimentary matrices such as milk, cheese and meat. The list of targets include, among the others, Listeria spp., Salmonella spp., Shigella spp., Escherichia coli spp., Campylobacter spp., Clostridium spp. and Staphylococcus aureus. The accuracy of detection was determined by using ATCC strains as positive and negative controls. The achieved sensitivity of each of assays was 1 pg of genomic DNA, which was equivalent to ∼1 cfu. The working ranges of the TaqMan(®) Real-time PCR assays, when used quantitatively on cheese and meat samples inoculated with serial dilution of Listeria spp., Listeria monocytogenes, S. aureus, Salmonella enterica, Shigella boydii, E. coli O157:H7, Bacillus cereus, Campylobacter coli, Yersinia enterocolitica, Enterobacter sakazakii and Pseudomonas aeruginosa was 10(8) cfu/g to 10(4) cfu/g. No matrix interferences were observed.


International Journal of Food Microbiology | 2011

Development of a pentaplex PCR assay for the simultaneous detection of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. helveticus, L. fermentum in whey starter for Grana Padano cheese.

Paola Cremonesi; Laura Vanoni; Stefano Morandi; Tiziana Silvetti; Bianca Castiglioni; Milena Brasca

A pentaplex PCR assay for the rapid, selective and simultaneous detection of Lactobacillus helveticus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and L. fermentum, was developed. The target sequences were a group of genes coding for beta-galactosidase production (S. thermophilus and L. delbrueckii subsp. bulgaricus), for cell-enveloped associated proteinase synthesis (L. helveticus), for dipeptide transport system production (L. delbrueckii subsp. lactis) and for arginine-ornithine antiporter protein production (L. fermentum). The analytical specificity of the assay was evaluated with 5 reference strains and 140 lactic acid bacterial strains derived from raw milk cheeses and belonging to the Lactobacillus, Streptococcus, Lactococcus and Enterococcus genera. The identification limit for each target strain was 10(3)CFU/ml. This new molecular assay was used to investigate the LAB population by direct extraction of DNA from the 12 whey cultures for Grana Padano. The pentaplex PCR assay revealed a good correspondence with microbiological analyses and allowed to identify even minor LAB community members which, can be out-competed in vitro by numerically more abundant microbial species.

Collaboration


Dive into the Paola Cremonesi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Morandi

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Milena Brasca

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emanuele Capra

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge