Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Magnaghi is active.

Publication


Featured researches published by Paola Magnaghi.


Nature Chemical Biology | 2013

Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death

Paola Magnaghi; Roberto D'alessio; Barbara Valsasina; Nilla Avanzi; Simona Rizzi; Daniela Asa; Fabio Gasparri; Ulisse Cucchi; Christian Orrenius; Paolo Polucci; Dario Ballinari; Claudia Perrera; Antonella Leone; Giovanni Cervi; Elena Casale; Yang Xiao; Chihunt Wong; Daniel J. Anderson; Arturo Galvani; Daniele Donati; Thomas O'Brien; Peter K. Jackson; Antonella Isacchi

VCP (also known as p97 or Cdc48p in yeast) is an AAA(+) ATPase regulating endoplasmic reticulum-associated degradation. After high-throughput screening, we developed compounds that inhibit VCP via different mechanisms, including covalent modification of an active site cysteine and a new allosteric mechanism. Using photoaffinity labeling, structural analysis and mutagenesis, we mapped the binding site of allosteric inhibitors to a region spanning the D1 and D2 domains of adjacent protomers encompassing elements important for nucleotide-state sensing and ATP hydrolysis. These compounds induced an increased affinity for nucleotides. Interference with nucleotide turnover in individual subunits and distortion of interprotomer communication cooperated to impair VCP enzymatic activity. Chemical expansion of this allosteric class identified NMS-873, the most potent and specific VCP inhibitor described to date, which activated the unfolded protein response, interfered with autophagy and induced cancer cell death. The consistent pattern of cancer cell killing by covalent and allosteric inhibitors provided critical validation of VCP as a cancer target.


Molecular Oncology | 2014

The TPM3-NTRK1 rearrangement is a recurring event in colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase inhibition.

Elena Ardini; Roberta Bosotti; Andrea Lombardi Borgia; Cristina De Ponti; Alessio Somaschini; Rosaria Cammarota; Nadia Amboldi; Laura Raddrizzani; Andrea Milani; Paola Magnaghi; Dario Ballinari; Daniele Casero; Fabio Gasparri; Patrizia Banfi; Nilla Avanzi; Maria Beatrice Saccardo; Rachele Alzani; Tiziano Bandiera; Eduard Felder; Daniele Donati; Enrico Pesenti; Andrea Sartore-Bianchi; Marcello Gambacorta; Marco A. Pierotti; Salvatore Siena; Silvio Veronese; Arturo Galvani; Antonella Isacchi

The NTRK1 gene encodes Tropomyosin‐related kinase A (TRKA), the high‐affinity Nerve Growth Factor Receptor. NTRK1 was originally isolated from a colorectal carcinoma (CRC) sample as component of a somatic rearrangement (TPM3‐NTRK1) resulting in expression of the oncogenic chimeric protein TPM3‐TRKA, but there has been no subsequent report regarding the relevance of this oncogene in CRC. The KM12 human CRC cell line expresses the chimeric TPM3‐TRKA protein and is hypersensitive to TRKA kinase inhibition. We report the detailed characterization of the TPM3‐NTRK1 genomic rearrangement in KM12 cells and through a cellular screening approach, the identification of NMS‐P626, a novel highly potent and selective TRKA inhibitor. NMS‐P626 suppressed TPM3‐TRKA phosphorylation and downstream signaling in KM12 cells and showed remarkable antitumor activity in mice bearing KM12 tumors.


Journal of Medicinal Chemistry | 2013

Alkylsulfanyl-1,2,4-triazoles, a new class of allosteric valosine containing protein inhibitors. Synthesis and structure-activity relationships.

Paolo Polucci; Paola Magnaghi; Mauro Angiolini; Daniela Asa; Nilla Avanzi; Alessandra Badari; Jay Aaron Bertrand; Elena Casale; Silvia Cauteruccio; Alessandra Cirla; Arturo Galvani; Peter K. Jackson; Yichin Liu; Steven Magnuson; Beatrice Malgesini; Stefano Nuvoloni; Christian Orrenius; Federico Riccardi Sirtori; Laura Riceputi; Simona Rizzi; Beatrice Trucchi; Tom O’Brien; Antonella Isacchi; Daniele Donati; Roberto D’Alessio

Valosine containing protein (VCP), also known as p97, is a member of AAA ATPase family that is involved in several biological processes and plays a central role in the ubiquitin-mediated degradation of misfolded proteins. VCP is an ubiquitously expressed, highly abundant protein and has been found overexpressed in many tumor types, sometimes associated with poor prognosis. In this respect, VCP has recently received a great deal of attention as a potential new target for cancer therapy. In this paper, the discovery and structure-activity relationships of alkylsulfanyl-1,2,4-triazoles, a new class of potent, allosteric VCP inhibitors, are described. Medicinal chemistry manipulation of compound 1, identified via HTS, led to the discovery of potent and selective inhibitors with submicromolar activity in cells and clear mechanism of action at consistent doses. This represents a first step toward a new class of potential anticancer agents.


Molecular Cancer Therapeutics | 2016

Entrectinib, a Pan-TRK, ROS1 and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications

Elena Ardini; Maria Menichincheri; Patrizia Banfi; Roberta Bosotti; Cristina De Ponti; Romana Pulci; Dario Ballinari; Marina Ciomei; Gemma Texido; Anna Degrassi; Nilla Avanzi; Nadia Amboldi; Maria Beatrice Saccardo; Daniele Casero; Paolo Orsini; Tiziano Bandiera; Luca Mologni; David Anderson; Ge Wei; Jason B. Harris; Jean-Michel Vernier; Gang Li; Eduard Felder; Daniele Donati; Antonella Isacchi; Enrico Pesenti; Paola Magnaghi; Arturo Galvani

Activated ALK and ROS1 tyrosine kinases, resulting from chromosomal rearrangements, occur in a subset of non–small cell lung cancers (NSCLC) as well as other tumor types and their oncogenic relevance as actionable targets has been demonstrated by the efficacy of selective kinase inhibitors such as crizotinib, ceritinib, and alectinib. More recently, low-frequency rearrangements of TRK kinases have been described in NSCLC, colorectal carcinoma, glioblastoma, and Spitzoid melanoma. Entrectinib, whose discovery and preclinical characterization are reported herein, is a novel, potent inhibitor of ALK, ROS1, and, importantly, of TRK family kinases, which shows promise for therapy of tumors bearing oncogenic forms of these proteins. Proliferation profiling against over 200 human tumor cell lines revealed that entrectinib is exquisitely potent in vitro against lines that are dependent on the drugs pharmacologic targets. Oral administration of entrectinib to tumor-bearing mice induced regression in relevant human xenograft tumors, including the TRKA-dependent colorectal carcinoma KM12, ROS1-driven tumors, and several ALK-dependent models of different tissue origins, including a model of brain-localized lung cancer metastasis. Entrectinib is currently showing great promise in phase I/II clinical trials, including the first documented objective responses to a TRK inhibitor in colorectal carcinoma and in NSCLC. The drug is, thus, potentially suited to the therapy of several molecularly defined cancer settings, especially that of TRK-dependent tumors, for which no approved drugs are currently available. Mol Cancer Ther; 15(4); 628–39. ©2016 AACR.


Journal of Medicinal Chemistry | 2016

Discovery of Entrectinib: A New 3-Aminoindazole as a Potent Anaplastic Lymphoma Kinase (Alk), C-Ros Oncogene 1 Kinase (Ros1), and Pan-Tropomyosin Receptor Kinases (Pan-Trks) Inhibitor.

Maria Menichincheri; Elena Ardini; Paola Magnaghi; Nilla Avanzi; Patrizia Banfi; Roberto Bossi; Laura Buffa; Giulia Canevari; Lucio Ceriani; Maristella Colombo; Luca Corti; Daniele Donati; Marina Fasolini; Eduard Felder; Claudio Fiorelli; Francesco Fiorentini; Arturo Galvani; Antonella Isacchi; Andrea Lombardi Borgia; Chiara Marchionni; Marcella Nesi; Christian Orrenius; Achille Panzeri; Enrico Pesenti; Luisa Rusconi; Maria Beatrice Saccardo; Ermes Vanotti; Ettore Perrone; Paolo Orsini

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase responsible for the development of different tumor types. Despite the remarkable clinical activity of crizotinib (Xalkori), the first ALK inhibitor approved in 2011, the emergence of resistance mutations and of brain metastases frequently causes relapse in patients. Within our ALK drug discovery program, we identified compound 1, a novel 3-aminoindazole active on ALK in biochemical and in cellular assays. Its optimization led to compound 2 (entrectinib), a potent orally available ALK inhibitor active on ALK-dependent cell lines, efficiently penetrant the blood-brain barrier (BBB) in different animal species and highly efficacious in in vivo xenograft models. Moreover, entrectinib resulted to be strictly potent on the closely related tyrosine kinases ROS1 and TRKs recently found constitutively activated in several tumor types. Entrectinib is currently undergoing phase I/II clinical trial for the treatment of patients affected by ALK-, ROS1-, and TRK-positive tumors.


Molecular Cancer Therapeutics | 2009

Abstract A243: Characterization of NMS‐E628, a small molecule inhibitor of anaplastic lymphoma kinase with antitumor efficacy in ALK‐dependent lymphoma and non‐small cell lung cancer models

Elena Ardini; Maria Menichincheri; Cristina De Ponti; Nadia Amboldi; Maria Beatrice Saccardo; Gemma Texido; Micaela Russo; Paolo Orsini; Tiziano Bandiera; Andrea Lombardi Borgia; Antonella Isacchi; Enrico Pesenti; Francesco Colotta; Paola Magnaghi; Arturo Galvani; Nerviano Medical

The chromosomal translocation t(2;5)(p23;q35) involving the ALK tyrosine kinase gene results in expression of the NPM‐ALK fusion protein which represents the driving force for survival and proliferation of a subset of Anaplastic Large Cell Lymphoma. More recently, a distinct chromosomal rearrangement of the ALK gene leading to a new fusion variant EML4‐ALK, has been identified as a low frequency event, mutually exclusive with respect to EGFR and K‐ras mutation, in Non Small Cell Lung cancer patients. As previously found for NPM‐ALK, this new fusion variant has constitutively active ALK kinase and was demonstrated to have strong oncogenic potential. Taken together these findings support the hypothesis that ALK represents an innovative and valuable target for cancer therapy both in ALCL and NSCLC patients whose tumors harbor translocated ALK. Here we further describe the preclinical characterization of NMS‐E628, an orally available small‐molecule inhibitor of ALK kinase activity. Proliferation profiling on a wide panel of human tumor cell lines demonstrated that the compound selectively blocks proliferation of ALK‐dependent cell lines and potently inhibits ALK‐dependent signaling. In vivo, NMS‐E628 induced complete tumor regression when administered orally for ten consecutive days to SCID mice bearing Karpas‐299 or SR‐786 xenografts, with ex vivo analyses demonstrating dose‐dependent target modulation that was maintained for up to 18 hours after single treatment. NMS‐E628 was also highly efficacious in a transgenic mouse leukemia model in which human NPM‐ALK expression was targeted to T cells. In this latter model, which faithfully recapitulates pathological features of human ALCL, treatment of NPM‐ALK transgenic mice with NMS‐E628 for as little as 3 consecutive days induced complete regression of tumor masses observed in the thymus and in lymph nodes. NMS‐E628 was also highly efficacious in inhibiting the in vitro and in vivo growth of the NSCLC cell line NCI‐H2228, which bears the EML4‐ALK rearrangement. Complete regressions were also achieved in this model, and prolonged inhibition of ALK phosphorylation and downstream effector activation were observed at active doses. NMS‐E628 has favorable pharmacokinetic and toxicological properties and biodistribution analysis revealed that it is able to cross the blood‐brain barrier in different animal species. To confirm that therapeutic doses are reached in the brain, NCI‐H2228 cells were injected intracranially in nude mice and NMS‐E628 was administered orally with different schedules. Dose‐dependent increase in survival, together with inhibition of tumor growth as assessed by MRI, confirmed that NMS‐E628 does indeed possess antitumor activity in this setting, an important finding considering that a significant proportion of NSCLC patients develop brain metastases. Citation Information: Mol Cancer Ther 2009;8(12 Suppl):A244.


Journal of Medicinal Chemistry | 2014

Discovery of 2-(cyclohexylmethylamino)pyrimidines as a new class of reversible valosine containing protein inhibitors.

Giovanni Cervi; Paola Magnaghi; Daniela Asa; Nilla Avanzi; Alessandra Badari; Daniela Borghi; Michele Caruso; Alessandra Cirla; Eduard Felder; Arturo Galvani; Fabio Gasparri; Antonio Lomolino; Steven Magnuson; Beatrice Malgesini; Ilaria Motto; Maurizio Pasi; Simona Rizzi; Barbara Salom; Graziella Sorrentino; Sonia Troiani; Barbara Valsasina; Thomas O’Brien; Antonella Isacchi; Daniele Donati; Roberto D’Alessio

Valosine-containing protein (VCP), also known as p97 or cdc48 in yeast, is a highly abundant protein belonging to the AAA ATPase family involved in a number of essential cellular functions, including ubiquitin-proteasome mediated protein degradation, Golgi reassembly, transcription activation, and cell cycle control. Altered expression of VCP has been detected in many cancer types sometimes associated with poor prognosis. Furthermore, VCP mutations are causative of some neurodegenerative disorders. In this paper we report the discovery, synthesis, and structure-activity relationships of substituted 2-aminopyrimidines, representing a new class of reversible VCP inhibitors. This class of compounds, identified in a HTS campaign against recombinant VCP, has been progressively expanded and manipulated to increase biochemical potency and gain cellular activity.


Journal of Biomolecular Screening | 2012

Development of Biochemical Assays for the Identification of eIF4E-Specific Inhibitors

Carlo Visco; Claudia Perrera; Sandrine Thieffine; Federico Riccardi Sirtori; Roberto D’Alessio; Paola Magnaghi

Control of mRNA translation plays a critical role in cell growth, proliferation, and differentiation and is tightly regulated by AKT and RAS oncogenic pathways. A key player in the regulation of this process is the mRNA 5′ cap-binding protein, eukaryotic translation initiation factor 4E (eIF4E). eIF4E contributes to malignancy by selectively enabling the translation of a limited pool of mRNAs that generally encode key proteins involved in cell cycle progression, angiogenesis, and metastasis. Several data indicate that the inhibition of eIF4E in tumor cell lines and xenograft models impairs tumor growth and induces apoptosis; eIF4E, therefore, can be considered a valuable target for cancer therapy. Targeting the cap-binding pocket of eIF4E should represent a way to inhibit all the eIF4E cellular functions. We present here the development and validation of different biochemical assays based on fluorescence polarization and surface plasmon resonance techniques. These assays could support high-throughput screening, further refinement, and characterization of eIF4E inhibitors, as well as selectivity assessment against CBP80/CBP20, the other major cap-binding complex of eukaryotic cells, overall providing a robust roadmap for development of eIF4E-specific inhibitors.


Scientific Reports | 2017

Establishment and genomic characterization of the new chordoma cell line Chor-IN-1

Roberta Bosotti; Paola Magnaghi; Sebastiano Di Bella; Carlo Cusi; Fabio Bozzi; Nicola Beltrami; Giovanni Carapezza; Dario Ballinari; Nadia Amboldi; Rosita Lupi; Alessio Somaschini; Laura Raddrizzani; Barbara Salom; Arturo Galvani; Silvia Stacchiotti; Elena Tamborini; Antonella Isacchi

Chordomas are rare, slowly growing tumors with high medical need, arising in the axial skeleton from notochord remnants. The transcription factor “brachyury” represents a distinctive molecular marker and a key oncogenic driver of chordomas. Tyrosine kinase receptors are also expressed, but so far kinase inhibitors have not shown clear clinical efficacy in chordoma patients. The need for effective therapies is extremely high, but the paucity of established chordoma cell lines has limited preclinical research. Here we describe the isolation of the new Chor-IN-1 cell line from a recurrent sacral chordoma and its characterization as compared to other chordoma cell lines. Chor-IN-1 displays genomic identity to the tumor of origin and has morphological features, growth characteristics and chromosomal abnormalities typical of chordoma, with expression of brachyury and other relevant biomarkers. Chor-IN-1 gene variants, copy number alterations and kinome gene expression were analyzed in comparison to other four chordoma cell lines, generating large scale DNA and mRNA genomic data that can be exploited for the identification of novel pharmacological targets and candidate predictive biomarkers of drug sensitivity in chordoma. The establishment of this new, well characterized chordoma cell line provides a useful tool for the identification of drugs active in chordoma.


Molecular Cancer Therapeutics | 2017

Afatinib Is a New Therapeutic Approach in Chordoma with a Unique Ability to Target EGFR and Brachyury

Paola Magnaghi; Barbara Salom; Nadia Amboldi; Dario Ballinari; Elena Tamborini; Fabio Gasparri; Alessia Montagnoli; Laura Raddrizzani; Alessio Somaschini; Roberta Bosotti; Christian Orrenius; Fabio Bozzi; Silvana Pilotti; Arturo Galvani; Josh Sommer; Silvia Stacchiotti; Antonella Isacchi

Chordomas are rare bone tumors with no approved therapy. These tumors express several activated tyrosine kinase receptors, which prompted attempts to treat patients with tyrosine kinase inhibitors. Although clinical benefit was observed in phase II clinical trials with imatinib and sorafenib, and sporadically also with EGFR inhibitors, therapies evaluated to date have shown modest activity. With the goal of identifying new drugs with immediate therapeutic potential for chordoma patients, we collected clinically approved drugs and other advanced inhibitors of MET, PDGFRβ, and EGFR tyrosine kinases, and assessed their antiproliferative activity against a panel of chordoma cell lines. Chordoma cell lines were not responsive to MET and PDGFRβ inhibitors. U-CH1 and UM-Chor1 were sensitive to all EGFR inhibitors, whereas the remaining cell lines were generally insensitive to these drugs. Afatinib was the only EGFR inhibitor with activity across the chordoma panel. We then investigated the molecular mechanisms behind the responses observed and found that the antiproliferative IC50s correlate with the unique ability of afatinib to promote degradation of EGFR and brachyury, an embryonic transcription factor considered a key driver of chordoma. Afatinib displayed potent antitumor efficacy in U-CH1, SF8894, CF322, and CF365 chordoma tumor models in vivo. In the panel analyzed, high EGFR phosphorylation and low AXL and STK33 expression correlated with higher sensitivity to afatinib and deserve further investigation as potential biomarkers of response. These data support the use of afatinib in clinical trials and provide the rationale for the upcoming European phase II study on afatinib in advanced chordoma. Mol Cancer Ther; 17(3); 603–13. ©2017 AACR.

Collaboration


Dive into the Paola Magnaghi's collaboration.

Researchain Logo
Decentralizing Knowledge