Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Storti is active.

Publication


Featured researches published by Paola Storti.


Leukemia | 2010

Low bone marrow oxygen tension and hypoxia-inducible factor-1α overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138 + cells

Simona Colla; Paola Storti; Gaetano Donofrio; Marina Bolzoni; Mirca Lazzaretti; Manuela Abeltino; L. Ippolito; Antonino Neri; Domenico Ribatti; Vittorio Rizzoli; Eugenia Martella; Nicola Giuliani

Low bone marrow oxygen tension and hypoxia-inducible factor-1α overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138 + cells


Leukemia | 2012

Increased osteocyte death in multiple myeloma patients: Role in myeloma-induced osteoclast formation

Nicola Giuliani; Marzia Ferretti; Marina Bolzoni; Paola Storti; Mirca Lazzaretti; B. Dalla Palma; Sabrina Bonomini; Eugenia Martella; Luca Agnelli; Antonino Neri; F Ceccarelli; Carla Palumbo

The involvement of osteocytes in multiple myeloma (MM)-induced osteoclast (OCL) formation and bone lesions is still unknown. Osteocytes regulate bone remodelling at least partially, as a result of their cell death triggering OCL recruitment. In this study, we found that the number of viable osteocytes was significantly smaller in MM patients than in healthy controls, and negatively correlated with the number of OCLs. Moreover, the MM patients with bone lesions had a significantly smaller number of viable osteocytes than those without, partly because of increased apoptosis. These findings were further confirmed by ultrastructural in vitro analyses of human preosteocyte cells cocultured with MM cells, which showed that MM cells increased preosteocyte death and apoptosis. A micro-array analysis showed that MM cells affect the transcriptional profiles of preosteocytes by upregulating the production of osteoclastogenic cytokines such as interleukin (IL)-11, and increasing their pro-osteoclastogenic properties. Finally, the osteocyte expression of IL-11 was higher in the MM patients with than in those without bone lesions. Our data suggest that MM patients are characterized by a reduced number of viable osteocytes related to the presence of bone lesions, and that this is involved in MM-induced OCL formation.


Clinical Cancer Research | 2010

Interleukin-27 Acts as Multifunctional Antitumor Agent in Multiple Myeloma

Claudia Cocco; Nicola Giuliani; Emma Di Carlo; Emanuela Ognio; Paola Storti; Manuela Abeltino; Carlo Sorrentino; Maurilio Ponzoni; Domenico Ribatti; Irma Airoldi

Purpose: Multiple myeloma (MM) derives from plasmablast/plasma cells that accumulate in the bone marrow. Different microenvironmental factors may promote metastatic dissemination especially to the skeleton, causing bone destruction. The balance between osteoclast and osteoblast activity represents a critical issue in bone remodeling. Thus, we investigated whether interluekin-27 (IL-27) may function as an antitumor agent by acting directly on MM cells and/or on osteoclasts/osteoblasts. Experimental Design: The IL-27 direct antitumor activity on MM cells was investigated in terms of angiogenesis, proliferation, apoptosis, and chemotaxis. The IL-27 activity on osteoclast/osteoblast differentiation and function was also tested. In vivo studies were done using severe combined immunodeficient/nonobese diabetic mice injected with MM cell lines. Tumors from IL-27– and PBS-treated mice were analyzed by immunohistochemistry and PCR array. Results: We showed that IL-27 (a) strongly inhibited tumor growth of primary MM cells and MM cell lines through inhibition of angiogenesis, (b) inhibited osteoclast differentiation and activity and induced osteoblast proliferation, and (c) damped in vivo tumorigenicity of human MM cell lines through inhibition of angiogenesis. Conclusions: These findings show that IL-27 may represent a novel therapeutic agent capable of inhibiting directly MM cell growth as well as osteoclast differentiation and activity. Clin Cancer Res; 16(16); 4188–97. ©2010 AACR.


Leukemia | 2013

Hypoxia-inducible factor (HIF)-1α suppression in myeloma cells blocks tumoral growth in vivo inhibiting angiogenesis and bone destruction

Paola Storti; Marina Bolzoni; Gaetano Donofrio; Irma Airoldi; Daniela Guasco; Denise Toscani; Eugenia Martella; Mirca Lazzaretti; Cristina Mancini; Luca Agnelli; Kenneth D. Patrene; S. Maïga; Valentina Franceschi; Simona Colla; Judith Anderson; Antonino Neri; Martine Amiot; Franco Aversa; G. David Roodman; Nicola Giuliani

Hypoxia-inducible transcription factor-1 (HIF-1α) is overexpressed in multiple myeloma (MM) cells within the hypoxic microenvironment. Herein, we explored the effect of persistent HIF-1α inhibition by a lentivirus short hairpin RNA pool on MM cell growth either in vitro or in vivo and on the transcriptional and pro-angiogenic profiles of MM cells. HIF-1α suppression did not have a significant impact on MM cell proliferation and survival in vitro although, increased the antiproliferative effect of lenalidomide. On the other hand, we found that HIF-1α inhibition in MM cells downregulates the pro-angiogenic genes VEGF, IL8, IL10, CCL2, CCL5 and MMP9. Pro-osteoclastogenic cytokines were also inhibited, such as IL-7 and CCL3/MIP-1α. The effect of HIF-1α inhibition was assessed in vivo in nonobese diabetic/severe combined immunodeficiency mice both in a subcutaneous and an intratibial MM model. HIF-1α inhibition caused a dramatic reduction in the weight and volume of the tumor burden in both mouse models. Moreover, a significant reduction of the number of vessels and vascular endothelial growth factors (VEGFs) immunostaining was observed. Finally, in the intratibial experiments, HIF-1α inhibition significantly blocked bone destruction. Overall, our data indicate that HIF-1α suppression in MM cells significantly blocks MM-induced angiogenesis and reduces MM tumor burden and bone destruction in vivo, supporting HIF-1α as a potential therapeutic target in MM.


Cancer Research | 2008

CC-Chemokine Ligand 20/Macrophage Inflammatory Protein-3α and CC-Chemokine Receptor 6 Are Overexpressed in Myeloma Microenvironment Related to Osteolytic Bone Lesions

Nicola Giuliani; Gina Lisignoli; Simona Colla; Mirca Lazzaretti; Paola Storti; Cristina Mancini; Sabrina Bonomini; Cristina Manferdini; Katia Codeluppi; Andrea Facchini; Vittorio Rizzoli

The expression of the chemokine CC-chemokine ligand 20 (CCL20)/macrophage inflammatory protein (MIP)-3alpha and its receptor CC-chemokine receptor 6 (CCR6) by multiple myeloma (MM) and microenvironment cells and their potential relationship with osteoclast (OC) formation and osteolytic bone lesions in MM patients was investigated in this study. First, we found that MM cells rarely produce CCL20/MIP-3alpha but up-regulate its production by bone marrow (BM) osteoprogenitor cells and osteoblasts in coculture with the involvement of soluble factors as interleukin-1beta and tumor necrosis factor alpha. MM cells also stimulate both CCL20/MIP-3alpha and CCR6 expression by OCs in coculture. Thereafter, we showed that CCL20/MIP-3alpha significantly increases both the number of multinucleated tartrate-resistant acid phosphatase-positive OCs and receptor activator of nuclear factor-kappaB-positive OC progenitor cells similar to CCL3/MIP-1alpha. Finally, we found that blocking anti-CCL20/MIP-3alpha and anti-CCR6 antibodies significantly inhibits MM-induced OC formation. In vitro data were further expanded in vivo analyzing a total number of 64 MM patients. Significantly higher CCL20/MIP-3alpha levels were detected in MM patients versus monoclonal gammopathy of uncertain significance (MGUS) subjects and in MM osteolytic patients versus nonosteolytic ones. Moreover, a significant increase of CCL20/MIP-3alpha-positive osteoblasts in osteolytic MM patients compared with nonosteolytic ones was observed. Interestingly, no significant difference in BM CCL20/MIP-3alpha expression and level was observed between MGUS and nonosteolytic MM patients. Our data indicate that CCL20/MIP-3alpha and its receptor CCR6 are up-regulated in the bone microenvironment by MM cells and contribute to OC formation and osteolytic bone lesions in MM patients.


Cancer Microenvironment | 2011

Angiogenesis and Multiple Myeloma

Nicola Giuliani; Paola Storti; Marina Bolzoni; Benedetta Dalla Palma; Sabrina Bonomini

The bone marrow microenvironment in multiple myeloma is characterized by an increased microvessel density. The production of pro-angiogenic molecules is increased and the production of angiogenic inhibitors is suppressed, leading to an “angiogenic switch”. Here we present an overview of the role of angiogenesis in multiple myeloma, the pro-angiogenic factors produced by myeloma cells and the microenvironment, and the mechanisms involved in the myeloma-induced angiogenic switch. Current data suggest that the increased bone marrow angiogenesis in multiple myeloma is due to the aberrant expression of angiogenic factors by myeloma cells, the subsequent increase in pro-angiogenic activity of normal plasma cells as a result of myeloma cell angiogenic activity, and the increased number of plasma cells overall. Hypoxia also contributes to the angiogenic properties of the myeloma marrow microenvironment. The transcription factor hypoxia-inducible factor-1α is overexpressed by myeloma cells and affects their transcriptional and angiogenic profiles. In addition, potential roles of the tumor suppressor gene inhibitor of growth family member 4 and homeobox B7 have also been recently highlighted as repressors of angiogenesis and pro-angiogenic related genes, respectively. This complex pathogenetic model of myeloma-induced angiogenesis suggests that several pro-angiogenic molecules and related genes in myeloma cells and the microenvironment are potential therapeutic targets.


Experimental Hematology | 2010

Distinct transcriptional profiles characterize bone microenvironment mesenchymal cells rather than osteoblasts in relationship with multiple myeloma bone disease

Gina Lisignoli; Paola Storti; Luca Agnelli; Francesca Novara; Cristina Manferdini; Katia Codeluppi; Simona Colla; Monica Crugnola; Manuela Abeltino; Marina Bolzoni; Valentina Sgobba; Andrea Facchini; Giorgio Lambertenghi-Deliliers; Orsetta Zuffardi; Vittorio Rizzoli; Antonino Neri; Nicola Giuliani

OBJECTIVE Multiple myeloma (MM) is characterized by a high incidence of osteolytic bone lesions, which have been previously correlated with the gene expression profiles of MM cells. The aim of this study was to investigate the transcriptional patterns of cells in the bone microenvironment and their relationships with the presence of osteolysis in MM patients. MATERIALS AND METHODS Both mesenchymal (MSC) and osteoblastic (OB) cells were isolated directly from bone biopsies of MM patients and controls to perform gene expression profiling by microarrays and real-time polymerase chain reaction on selected bone-related genes. RESULTS We identified a series of upregulated and downregulated genes that were differentially expressed in the MSC cells of osteolytic and nonosteolytic patients. Comparison of the osteolytic and nonosteolytic samples also showed that the MSC cells and OB had distinct transcriptional patterns. No significantly modulated genes were found in the OBs of the osteolytic and nonosteolytic patients. CONCLUSIONS Our data suggest that the gene expression profiles of cells of the bone microenvironment are different in MM patients and controls, and that MSC cells, but not OBs, have a distinct transcriptional pattern associated with the occurrence of bone lesions in MM patients. These data support the idea that alterations in MSC cells may be involved in MM bone disease.


Leukemia | 2014

Bone marrow monocyte-/macrophage-derived activin A mediates the osteoclastogenic effect of IL-3 in multiple myeloma.

Rebecca Silbermann; Marina Bolzoni; Paola Storti; Daniela Guasco; Sabrina Bonomini; Dan Zhou; Jingwei Wu; Judith Anderson; Jolene J. Windle; Franco Aversa; G. David Roodman; Nicola Giuliani

Bone marrow monocyte-/macrophage-derived activin A mediates the osteoclastogenic effect of IL-3 in multiple myeloma


Leukemia | 2011

HOXB7 expression by myeloma cells regulates their pro-angiogenic properties in multiple myeloma patients

Paola Storti; Gaetano Donofrio; Simona Colla; Irma Airoldi; Marina Bolzoni; Luca Agnelli; Manuela Abeltino; Mirca Lazzaretti; Cristina Mancini; Domenico Ribatti; Sabrina Bonomini; Valentina Franceschi; Vito Pistoia; G. Lisignoli; A. Pedrazzini; O. Cavicchi; Antonino Neri; Vittorio Rizzoli; Nicola Giuliani

The deregulation of the homeobox genes as homeoboxB (HOXB)-7 has been previously associated to tumor progression and angiogenesis; here we investigated the potential role of HOXB7 in the pro-angiogenic properties of multiple myeloma (MM) cells. We found that HOXB7 was expressed in 10 out of 22 MM patients analyzed at the diagnosis related to high bone marrow angiogenesis and overexpressed in about 40% of myeloma cell lines compared with normal plasma cells. Enforced HOXB7 expression in MM cells by a lentiviral vector significantly modified their transcriptional and angiogenic profile, checked by combined microarray and angiogenesis PCR analyses, upregulating VEGFA, FGF2, MMP2, WNT5a and PDGFA and downregulating thrombospoindin-2. The pro- and anti-angiogenic HOXB7-related gene signature was also validated in a large independent dataset of MM patients. Accordingly, MM-induced vessel formation was significantly increased by HOXB7 overexpression both in vitro angiogenic and chorioallantoic membrane assays, as well as the HOXB7 silencing by small interfering RNA inhibited the production of angiogenic factors, and the pro-angiogenic properties of MM cells. Finally, in SCID-NOD mice we confirmed that HOXB7 overexpression by MM cells stimulated tumor growth, increased MM-associated angiogenesis and the expression of pro-angiogenic genes by microarray analysis supporting the critical role of HOXB7 in the angiogenic switch in MM.


Leukemia | 2013

Myeloma cells inhibit non-canonical wnt co-receptor ror2 expression in human bone marrow osteoprogenitor cells: effect of wnt5a/ror2 pathway activation on the osteogenic differentiation impairment induced by myeloma cells

Marina Bolzoni; Gaetano Donofrio; Paola Storti; Daniela Guasco; Denise Toscani; Mirca Lazzaretti; Sabrina Bonomini; Luca Agnelli; Antonio Capocefalo; B. Dalla Palma; Antonino Neri; Francesco Nicolini; Gina Lisignoli; F. Russo; Simona Colla; Franco Aversa; Nicola Giuliani

Multiple myeloma (MM) is characterized by the impaired osteogenic differentiation of human mesenchymal stromal cells (hMSCs). Canonical Wnt signaling is critical for the regulation of bone formation, however, recent evidence suggests that the non-canonical Wnt agonist Wnt5a stimulates human osteoblastogenesis through its co-receptor Ror2. The effects of MM cells on non-canonical Wnt signaling and the effect of the activation of this pathway on MM-induced osteoblast exhaustion are not known and were investigated in this study. We found that the osteogenic differentiation of bone marrow hMSCs toward osteoprogenitor cells (PreOB) significantly increased Ror2 expression, and that MM cells inhibit Ror2 expression by PreOB in co-culture by inhibiting the non-canonical Wnt5a signaling. The activation of the non-canonical Wnt pathway in hMSCs by means of Wnt5a treatment and the overexpression of Wnt5 or Ror2 by lentiviral vectors increased the osteogenic differentiation of hMSCs and blunted the inhibitory effect of MM in co-culture. Consistently, Wnt5a inhibition by specific small interfering RNA reduced the hMSC expression of osteogenic markers. Our findings demonstrate that the Wnt5a/Ror2 pathway is involved in the pathophysiology of MM-induced bone disease and that the activation of the non-canonical Wnt5a/Ror2 pathway in hMSCs increases osteogenic differentiation and may counterbalance the inhibitory effect of MM cells.

Collaboration


Dive into the Paola Storti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Agnelli

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge