Paolo Bondavalli
École Polytechnique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo Bondavalli.
Journal of Materials Chemistry | 2012
Hung Tran Nguyen; Mihai Robert Zamfir; Loc Dinh Duong; Young Hee Lee; Paolo Bondavalli; Didier Pribat
Amongst other requirements, a good anode for Li-ion battery applications must exhibit dimensional stability upon Li insertion, as well as chemical inertness with respect to the electrolyte. This latter characteristic is usually provided by the so-called solid electrolyte interphase (SEI), a passivating film that is formed at the end of the first lithiation step, originating from the partial reduction of the electrolyte and Li salt. However, silicon, which exhibits the highest known capacity for Li alloying, possesses none of the above attributes when used as an anode material. Actually, the large volume expansion of Si upon alloying with Li induces a mechanical instability of the SEI film, which therefore fails to provide its protective role. In this paper, we have studied the effect of thin alumina deposits on top of Si-based nanowires. A thin alumina deposit will act as a substitute for the SEI, preventing electrolyte decomposition. We observe that even if alumina films crack during lithiation–delithiation steps of the Si-based nanowires, they still provide some kind of protection, prolonging the lifetime of the anode. Using Al2O3-coated Si-based nanowires, we have been able to obtain a lifetime of 1280 cycles when the capacity of the anode was limited to 1200 mA h g−1. We also show that uncoated Si nanowires degrade more rapidly when cycled under identical conditions.
Applied Physics Letters | 2011
Aurélien Gohier; Anirban Dhar; Louis Gorintin; Paolo Bondavalli; Yvan Bonnassieux; Costel Sorin Cojocaru
This contribution deals with all-printed infrared sensors fabricated using multiwalled carbon nanotubes deposited on a flexible polyimide substrate. A high responsivity of up to 1.2 kV/W is achieved at room temperature in ambient air. We evidence a strong dependence of the device transduction mechanism on the surrounding atmosphere, which can be attributed to bolometric effect interference with water molecule desorption upon irradiation.
IEEE\/OSA Journal of Display Technology | 2012
Didier Pribat; Paolo Bondavalli
Carbon nanotubes are actively studied for thin-film transistor and electronics applications. Although these nanomaterials were first considered as potential candidates for the replacement of Si MOS type transistors in VLSI circuits, their main field of application is shifting towards large area electronics on flexible, plastic-type substrates, a domain which is at present, less demanding in terms of device dimensions and integration density. In particular, random networks of carbon nanotubes, which can be obtained by solution-processing or grown at low temperature, represent an attractive and viable option for the fabrication of electronic circuitry on non-refractory substrates. This paper briefly reviews some recent advances in the field, highlighting realisations beyond the fabrication of simple transistors.
Proceedings of SPIE | 2013
Pierre Le Barny; Bernard Servet; Stéphane Campidelli; Paolo Bondavalli; Christophe Galindo
The use of carbon-based materials in electrochemical double-layer supercapacitors (EDLC) is currently being the focus of much research. Even though activated carbon (AC) is the state of the art electrode material, AC suffers from some drawbacks including its limited electrical conductivity, the need for a binder to ensure the expected electrode cohesion and its limited accessibility of its pores to solvated ions of the electrolyte. Owing to their unique physical properties, carbon nanotubes (CNTs) or graphene could overcome these drawbacks. It has been demonstrated that high specific capacitance could be obtained when the carbon accessible surface area of the electrode was finely tailored by using graphene combined with other carbonaceous nanoparticles such as CNTs12.In this work, to further increase the specific capacitance of the electrode, we have covalently grafted onto the surface of single-walled carbon nanotubes (SWCNTs), exfoliated graphite or graphene oxide (GO), anthraquinone (AQ) derivatives which are electrochemically active materials. The modified SWCNTs and graphene-like materials have been characterized by Raman spectroscopy, X-ray photoemission and cyclic voltammetry . Then suspensions based on mixtures of modified SWCNTs and modified graphene-like materials have been prepared and transformed into electrodes either by spray coating or by filtration. These electrodes have been characterized by SEM and by cyclic voltammetry in 0.1M H2S04 electrolyte.
Proceedings of SPIE | 2013
Paolo Bondavalli; C. Delfaure; Didier Pribat; Pierre Legagneux
This contribution deals with the fabrication of electrode and supercapacitor cell using a new dynamic air-brush deposition technique. This method allows to achieve extremely (ou highly) uniform mats with finely tuned thickness and weight in a completely reproducible way. Using this deposition technique, we have analyzed the effect of mixture of CNTs and graphene/graphite on the electrode and cell properties (energy, power and capacitance). using a mixture of 75% of graphene/graphite and 25% of CNTs we increased the power by a factor 2.5 compared to bare CNTs based electrodes. We also analyzed the effect of the weight firstly on the capacitance and specific energy and then on the specific power. We were able to reach a specific power of 200kW/Kg and a specific energy of 9.1Wh/Kg with an electrode having a surface of 2cm2 and a weight of 0.25mg composed by 50% of CNTs and graphene/graphite (using a common aqueous electrolyte). using our deposition technique we are able to achieve supercapacitors with ad-hoc characteristics simply modulating the weight and the concentration of the mixture in a completely reproducible way.
Proceedings of SPIE | 2011
Paolo Bondavalli; Louis Gorintin; F. Longnos; G. Feugnet
This contribution deals with Carbon Nanotubes Field Effect transistors (CNTFETs) based gas sensors fabricated using a new dynamic spray based technique for SWCNTs deposition. This technique is compatible with large surfaces, flexible substrates and allows to fabricate high performances transistors exploiting the percolation effect of the SWCNTs networks achieved with extremely reproducible characteristics. Recently, we have been able to achieve extremely selective measurement of NO2 , NH3 and DMMP using four CNTFETS fabricated using different metals as electrodes (Pt, Au, Ti, Pd), exploiting the specific interaction between gas and metal/SWCNT junction. In this way we have identify a sort of electronic fingerprinting of the gas. The time response is evaluated at less than 30sec and the sensitivity can reach 20ppb for NO2, 100ppb for NH3 and 1ppm for DMMP (Di-Methyl-Methyl-Phosphonate).
Proceedings of SPIE | 2009
Louis Gorintin; Paolo Bondavalli; Pierre Legagneux; Didier Pribat
Our study deals with the utilization of carbon nanotubes networks based transistors with different metal electrodes for highly selective gas sensing. Indeed, carbon nanotubes networks can be used as semi conducting materials to achieve good performances transistors. These devices are extremely sensitive to the change of the Schottky barrier heights between Single Wall Carbon Nanotubes (SWCNTs) and drain/source metal electrodes: the gas adsorption creates an interfacial dipole that modifies the metal work function and so the bending and the height of the Schottky barrier at the contacts. Moreover each gas interacts specifically with each metal identifying a sort of electronic fingerprinting. Using airbrush technique for deposition, we have been able to achieve uniform random networks of carbon nanotubes suitable for large area applications and mass production such as fabrication of CNT based gas sensors. These networks enable us to achieve transistors with on/off ratio of more than 5 orders of magnitude. To reach these characteristics, the density of the CNT network has been adjusted in order to reach the percolation threshold only for semi-conducting nanotubes. These optimized devices have allowed us to tune the sensitivity (improving it) of our sensors for highly selective detection of DiMethyl-Methyl-Phosphonate (DMMP, a sarin stimulant), and even volatile drug precursors using Pd, Au and Mo electrodes.
MRS Proceedings | 2009
Paolo Bondavalli; Louis Gorintin; Pierre Legagneux; Didier Pribat; Laurent Caillier; Jean-Pierre Simonato
The first paper showing the great potentiality of Carbon Nanotubes Field Effect transistors (CNTFETs) for gas sensing applications was published in 2000 [1]. It has been demonstrated that the performances of this kind of sensors are extremely interesting: a sensitivity of around 100ppt (e.g. for NO 2 [2]) has been achieved in 2003 and several techniques to improve selectivity have been tested with very promising results [2]. The main issues that have not allowed, up to now, these devices to strike more largely the market of sensors, have been the lack of an industrial method to obtain low-cost devices, a demonstration of their selectivity in relevant environments and finally a deeper study on the effect of humidity and the possible solutions to reduce it. This contribution deals with CNTFETs based sensors fabricated using air-brush technique deposition on large surfaces. Compared to our last contribution [3], we have optimized the air-brush technique in order to obtain high performances transistors (Log(I on )/Log(I off ) ∼ 5/6) with highly reproducible characteristics : this is a key point for the industrial exploitation. We have developed a machine which allows us the dynamic deposition on heated substrates of the SWCNT solutions, improving dramatically the uniformity of the SWCNT mats. We have performed tests using different solvents that could be adapted as a function of the substrates (e.g. flexible substrates). Moreover these transistors have been achieved using different metal electrodes (patented approach [4]) in order to improve selectivity. Results of tests using NO 2 , NH 3 with concentrations between ∼ 1ppm and 10ppm will be shown during the meeting.
Sensors and Actuators B-chemical | 2009
Paolo Bondavalli; Pierre Legagneux; Didier Pribat
Analyst | 2012
Yann Battie; Louis Gorintin; Olivier Ducloux; Philippe Thobois; Paolo Bondavalli; Gilles Feugnet; Annick Loiseau