Paolo Defazio
University of Siena
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo Defazio.
Journal of Chemical Physics | 2006
Paolo Defazio; Carlo Petrongolo
We present the Born-Oppenheimer (BO) and Renner-Teller (RT) quantum dynamics of the reaction (14)N((2)D)+(1)H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-))+H((2)S), considering the NH(2) electronic states X (2)B(1) and A (2)A(1). These states correlate to the same (2)Pi(u) linear species, are coupled by RT nonadiabatic effects, and give NH(X (3)Sigma(-))+H and NH(a (1)Delta)+H, respectively. We develop the Hamiltonian matrix elements in the R embedding of the Jacobi coordinates and in the adiabatic electronic representation, using the permutation-inversion symmetry, and taking into account the nuclear-spin statistics. Collision observables are calculated via the real wave-packet (WP) and flux methods, using the potential-energy surfaces of Santoro et al. [J. Phys. Chem. A 106, 8276 (2002)]. WP snapshots show that the reaction proceeds via an insertion mechanism, and that the RT-WP avoids the A (2)A(1) potential barrier, jumping from the excited to the ground surface and giving mainly the NH(X (3)Sigma(-)) products. X (2)B(1) BO probabilities and cross sections show large tunnel effects and are approximately four to ten times larger than the A (2)A(1) ones. This implies a BO rate-constant ratio k(X (2)B(1))k(A (2)A(1)) approximately 10(5) at 300 K, i.e., a negligible BO formation of NH(a (1)Delta). When H(2) is rotationally excited, RT couplings reduce slightly the X (2)B(1) reaction observables, but enhance strongly the A (2)A(1) reactivity. These couplings are important at all collision energies, reduce the collision threshold, and increase remarkably reaction probabilities and cross sections. The RT k(A (2)A(1)) is thus approximately 3.3 order of magnitude larger than the BO value, and degeneracy-averaged, initial-state-resolved rate constants increase by approximately 13% and by approximately 47% at 300 and 500 K, respectively. Owing to an overestimation of the X (2)B(1) potential barrier, the calculated thermal rate is too low with respect to that observed, but we obtain a good agreement by shifting down the calculated cross section.
Journal of Chemical Physics | 2008
Pablo Gamallo; Paolo Defazio; Miguel González; Carlo Petrongolo
We present Renner-Teller (RT) and Born-Oppenheimer (BO) coupled-channel (CC) dynamics of the reaction (14)N((2)D)+(1)H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-))+H((2)S), considering both NH(2) coupled electronic states, X (2)B(1) and A (2)A(1), and Coriolis interactions. We use the best available potential energy surfaces (PESs), and we obtain initial-state-resolved reaction probabilities, cross sections, and rate constants through the real wavepacket and flux methods, taking into account the nuclear-spin statistics for both electronic states. Contrasting RT-CC with more approximate results, we point out the role of RT and Coriolis couplings, and discuss the importance of the A (2)A(1) excited state on the initial-state-resolved dynamics and on the thermal kinetic rate. Confirming the previous results, RT couplings transfer partly the reactivity from X (2)B(1) to A (2)A(1), and CC calculations are necessary to obtain accurate high-energy cross sections. When H(2) is initially rotating, RT couplings enhance strongly the electronic-state-resolved A (2)A(1) reactivity. Considering the nuclear-spin statistics for both electronic states, we find out that the A (2)A(1) state plays a significant role in the rotationally resolved dynamics of N((2)D)+ortho-H(2). However, the BO-X (2)B(1) approximation gives a thermal rate that is slightly smaller than the one obtained by the RT-CC calculations. This implies that this usual approximation is acceptable to calculate unresolved kinetic data of the title reaction. Our calculated rate constant values within the 213-300 K temperature interval are in excellent agreement with the experimental ones.
Journal of Chemical Physics | 2007
Paolo Defazio; Carlo Petrongolo
We present Coriolis coupling effects on the initial-state-resolved dynamics of the insertion reaction N((2)D)+H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-) and a (1)Delta)+H((2)S), without and with nonadiabatic Renner-Teller (RT) interactions between the NH(2) X (2)B(1) and A (2)A(1) electronic states. We report coupled-channel (CC) Hamiltonian matrix elements, which take into account both Coriolis and RT couplings, use the real wave-packet and flux methods for calculating initial-state-resolved reaction probabilities, and contrast CC with centrifugal-sudden (CS) results. Without RT interactions, Coriolis effects are rather small up to J=40, and the CS approximation can be safely employed for calculating initial-state-resolved, integral cross sections. On the other hand, RT effects are associated with rather large Coriolis couplings, mainly near the linearity of NH(2), and the accuracy of the CS approximation thus breaks down at high collision energies, when the reaction starts on the excited A (2)A(1) surface. We also present the CC-RT distribution of the X (3)Sigma(-) and a (1)Delta electronic states of the NH products.
Journal of Chemical Physics | 2006
Pablo Gamallo; R. Sayós; Miguel González; Carlo Petrongolo; Paolo Defazio
The reaction N+NO→N2+O was studied by means of the time-dependent real wave-packet (WP) method and the J-shifting approximation. We consider the ground 1A″3 and first excited 1A′3 triplet states, which correlate with both reactants and products, using analytical potential energy surfaces (PESs) recently developed in our group. This work extends our previous quantum dynamics study, and probabilities, cross sections, and rate constants were calculated and interpreted on the basis of the different shapes of the PESs (barrierless 1A″3 and with barrier 1A′3 surfaces, respectively). The WP rate constant (k1) shows a weak dependence on T(200–2500K), as the dominant contribution to reactivity is provided by the barrierless ground PES. There is a good agreement of WP k1 with the measurements and variational transition state theory (VTST) data, and also between the WP and VTST k1(1A″3) results. Nevertheless, there is a large discrepancy between the WP and VTST k1(1A′3) results. Product state distributions were also...
Journal of Physical Chemistry A | 2011
Pablo Gamallo; Paolo Defazio; Miguel González
The Ne + H(2)(+)(v(0) = 0-4, j(0) = 1) proton transfer reaction has been studied in a wide collision energy (E(col)) interval, using the time dependent real wave packet method and taking into account the Coriolis coupling (CC-RWP method) and employing a recent ab initio potential energy surface, widely extending the reaction conditions previously explored at the CC level. The reaction probability shows a strong oscillatory behavior vs E(col) and the presence of sharp resonances, arising from metastable NeH(2)(+) states. The behavior of the reaction cross section σ vs E(col) depends on the vibrational level and can in general be interpreted in terms of the late barrier character of the potential energy surface and the existence (or not) of threshold energy. The situation is particularly complex for v(0) = 2, as σ(v0=2, j0=1) presents significant oscillations with E(col) up to ≈0.33 eV, which probably reflect the resonances found in the reaction probability. Hence, it would be particularly interesting to investigate the Ne + H(2)(+)(v(0) = 2, j(0) = 1) reaction experimentally, as some resonances survive the partial wave summation. The state selected cross sections compare well with previous CC quantum and experimental results, and although the previous centrifugal sudden RWP cross sections are reasonable, the inclusion of the Coriolis coupling is important to achieve a quantitative description of this and similar systems.
Journal of Chemical Physics | 2009
Paolo Defazio; Carlo Petrongolo; Béatrice Bussery-Honvault; Pascal Honvault
We present the Born-Oppenheimer coupled-channel dynamics of the reaction (12)C((1)D)+(1)H(2)(X (1)Sigma(g) (+))-->CH(X (2)Pi)+H((2)S), considering the uncoupled CH(2) states ã (1)A(1) and b (1)B(1), the permutation-inversion symmetry, and Coriolis interactions. Using accurate MRCI potential energy surfaces (PESs), we obtain initial-state-resolved reaction probabilities, cross sections, and rate constants through the time-dependent, real wavepacket (WP) and flux methods, taking into account the proton-spin statistics for both electronic species. Comparing results on both PESs, we point out the role of the b (1)B(1) upper state on the initial-state-resolved dynamics and on the thermal kinetic rate. WP probabilities at J=0 and cross sections at E(col)=0.080 eV agree quite well with quantum-mechanical time-independent findings. Probabilities and WP snapshots show the different reaction mechanisms on the PESs, i.e., an ã (1)A(1) indirect perpendicular insertion and a b (1)B(1) direct sideways collision, associated with many and few sharp resonances, respectively. All cross sections are very large at low E(col), decrease at high energies, and that of the lowest reactant state presents some weak resonances. As the temperature increases from 100 to 400 K, the ã (1)A(1) rate constant increases slightly from 1.37x10(-10) to 1.43x10(-10) cm(3) s(-1), whereas the b (1)B(1) one decreases from 1.30x10(-10) to 0.98x10(-10) cm(3) s(-1). In this temperature range, the b (1)B(1) contribution to the total rate constant thus decreases from 49% to 41%. At 300 K, the WP and experimental rates are equal to (2.45+/-0.08)x10(-10) and (2.0+/-0.6)x10(-10) cm(3) s(-1), respectively.
Journal of Physical Chemistry A | 2003
Paolo Defazio; Stephen K. Gray
The quantum dynamics of the reaction D{sub 2} + OH {yields} DOH + D on the Wu-Schatz-Lendvay-Fang-Harding ab initio-based potential energy function is investigated. A recently developed four-atom implementation of the real wave packet method is employed. Extensive six-dimensional calculations for a total angular momentum of J = 0 and, within the helicity-decoupled approximation, numerous J > 0 calculations are performed. Cross sections and rate constants for reaction are estimated using a J-shifting procedure and compared with quasi-classical trajectory, transition state theory, and experimental results. The results are also contrasted with comparable results for H{sub 2} + OH. A surprising feature is that our rate constants agree best with zero-curvature transition state theory results, indicating that tunneling may not be as important as expected.
Journal of Chemical Physics | 2002
Paolo Defazio; Carlo Petrongolo; Carolina Oliva; Miguel González; R. Sayós
We report real wave packet (WP) calculations of reaction probabilities, cross sections, rate constants, and product distributions of the reaction N(4S)+O2(X 3∑g−)→NO(X 2∏)+O(3P). We propagate initial WPs corresponding to several O2 levels, and employ reactant coordinates and a flux method for calculating initial-state-resolved observables, or product coordinates and an asymptotic analysis for calculating state-to-state quantities. Exact or J-shifting calculations are carried out at total angular momentum J=0 or J>0, respectively. We employ the recent X 2A′ S3 potential energy surface (PES) by Sayos et al. and the earlier a 4A′ PES by Duff et al. In comparing S3 results with the WP ones of a previous X 2A′ S2 PES, we find lower S3 energy thresholds and larger S3 probabilities, despite the higher S3 barrier. This finding is due to the different features of the doublet PESs in the reactant and product channels, at the transition state, and in the NO2 equilibrium region. We analyze the effects of the O2 initi...
Journal of Chemical Physics | 2001
Paolo Defazio; Carlo Petrongolo; Stephen K. Gray; Carolina Oliva
We report three-dimensional quantum calculations of total angular momentum J=0 reaction probabilities, J-shifting cross sections, and rate constants of the title reaction. Employing the real wave packet approach, we propagate wave packets corresponding to several O2(v,j) initial levels on the X 2A′ potential surface of Sayos et al. As collision energy increases, the average probabilities first increase monotonically and then become nearly constant, while the cross sections rise in the overall energy range. Numerous probability resonances point out the formation of NOO collision complexes and NO final states. Rotational excitation in O2 decreases the collisional energy thresholds and enhances the state-resolved rate constants, mainly at low temperature. O2 vibrational excitation inhibits the reactivity, although the energy thresholds are still reduced. With respect to previous quasiclassical and mixed quantum-classical studies, we obtain lower thresholds and cross sections but similar rate constants, which...
Journal of Physical Chemistry A | 2010
Paolo Defazio; Pablo Gamallo; Miguel González; Carlo Petrongolo
Four reactions NH(a1Delta) + H′(2S) are investigated by the quantum mechanical real wavepacket method, taking into account nonadiabatic Renner-Teller (RT) and rovibronic Coriolis couplings between the involved states. We consider depletion (d) to N(2D) + H2(X1Sigmag+), exchange (e) to NH′(a1Delta) + H(2S), quenching (q) to NH(X3Sigma-) + H′(2S), and exchange-quenching (eq) to NH′(X3Sigma-) + H(2S). We extend our RT theory to a general AB + C collision using a geometry-dependent but very simple and empirical RT matrix element. Reaction probabilities, cross sections, and rate constants are presented, and RT results are compared with Born-Oppenheimer (BO), experimental, and semiclassical data. The nonadiabatic couplings open two new channels, (q) and (eq), and increase the (d) and (e) reactivity with respect to the BO one, when NH(a1Delta) is rotationally excited. In this case, the quantum cross sections are larger than the semiclassical ones at low collision energies. The calculated rate constants at 300 K are k(d) = 3.06, k(e) = 3.32, k(q) = 1.44, and k(eq) = 1.70 in 10(-11) cm3 s(-1) compared with the measured values k(d) = (3.2 =/- 1.7), k(q + eq) = (1.7 +/- 0.3), and k(total) = (4.8 +/- 1.7). The theoretical depletion rate is thus in good agreement with the experimental value, but the quenching and total rates are overestimated, because the present RT couplings are too large. This discrepancy is probably due to our simple and empirical RT matrix element.