Paolo Deri
University of Pisa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo Deri.
Development | 2005
Alessandra Salvetti; Leonardo Rossi; Annalisa Lena; Renata Batistoni; Paolo Deri; Giuseppe Rainaldi; Maria Teresa Fernanda Locci; Monica Evangelista; Vittorio Gremigni
As stem cells are rare and difficult to study in vivo in adults, the use of classical models of regeneration to address fundamental aspects of the stem cell biology is emerging. Planarian regeneration, which is based upon totipotent stem cells present in the adult – the so-called neoblasts– provides a unique opportunity to study in vivo the molecular program that defines a stem cell. The choice of a stem cell to self-renew or differentiate involves regulatory molecules that also operate as translational repressors, such as members of PUF proteins. In this study, we identified a homologue of the Drosophila PUF gene Pumilio (DjPum) in the planarian Dugesia japonica, with an expression pattern preferentially restricted to neoblasts. Through RNA interference (RNAi), we demonstrate that gene silencing of DjPum dramatically reduces the number of neoblasts, thus supporting the intriguing hypothesis that stem cell maintenance may be an ancestral function of PUF proteins.
Development Genes and Evolution | 2006
Leonardo Rossi; Alessandra Salvetti; Annalisa Lena; Renata Batistoni; Paolo Deri; Claudio Pugliesi; Elena Loreti; Vittorio Gremigni
Planarian regeneration, based upon totipotent stem cells, the neoblasts, provides a unique opportunity to study in vivo the molecular program that defines a stem cell. In this study, we report the identification of DjPiwi-1, a planarian homologue of Drosophila Piwi. Expression analysis showed that DjPiwi-1 transcripts are preferentially accumulated in small cells distributed along the midline of the dorsal parenchyma. DjPiwi-1 transcripts were not detectable after X-ray irradiation by whole mount in situ hybridization. Real time reverse transcriptase polymerase chain reaction analysis confirmed the significant reduction of DjPiwi-1 expression after X-ray treatment. However, the presence of residual DjPiwi-1 transcription suggests that, although the majority of DjPiwi-1-positive cells can be neoblasts, this gene is also expressed in differentiating/differentiated cells. During regeneration DjPiwi-1-positive cells reorganize along the midline of the stump and no accumulation of hybridization signal was observed either in the blastema area or in the parenchymal region beneath the blastema. DjPiwi-1-positive cells, as well as the DjMCM2-expressing neoblasts located along the midline and those spread all over the parenchyma, showed a lower tolerance to X-ray with respect to the DjMCM2-expressing neoblasts distributed along the lateral lines of the parenchyma. Taken together, these findings suggest the presence of different neoblast subpopulations in planarians.
Genome Biology | 2007
Leonardo Rossi; Alessandra Salvetti; Francesco M. Marincola; Annalisa Lena; Paolo Deri; Linda Mannini; Renata Batistoni; Ena Wang; Vittorio Gremigni
BackgroundMammalian stem cells are difficult to access experimentally; model systems that can regenerate offer an alternative way to characterize stem cell related genes. Planarian regeneration depends on adult pluripotent stem cells - the neoblasts. These cells can be selectively destroyed using X-rays, enabling comparison of organisms lacking stem cells with wild-type worms.ResultsUsing a genomic approach we produced an oligonucleotide microarray chip (the Dj600 chip), which was designed using selected planarian gene sequences. Using this chip, we compared planarians treated with high doses of X-rays (which eliminates all neoblasts) with wild-type worms, which led to identification of a set of putatively neoblast-restricted genes. Most of these genes are involved in chromatin modeling and RNA metabolism, suggesting that epigenetic modifications and post-transcriptional regulation are pivotal in neoblast regulation. Comparing planarians treated with low doses of X-rays (after which some radiotolerant neoblasts re-populate the planarian body) with specimens irradiated with high doses and unirradiated control worms, we identified a group of genes that were upregulated as a consequence of low-dose X-ray treatment. Most of these genes encode proteins that are known to regulate the balance between death and survival of the cell; our results thus suggest that genetic programs that control neoblast cytoprotection, proliferation, and migration are activated by low-dose X-rays.ConclusionThe broad differentiation potential of planarian neoblasts is unparalleled by any adult stem cells in the animal kingdom. In addition to our validation of the Dj600 chip as a valuable platform, our work contributes to elucidating the molecular mechanisms that regulate the self-renewal and differentiation of neoblasts.
Developmental Dynamics | 2000
Alessandra Salvetti; Leonardo Rossi; Paolo Deri; Renata Batistoni
The minichromosome maintenance (MCM2‐7) gene family encodes conserved proteins, which are essential for DNA replication licensing in eukaryotes. They are abundant in proliferating cells, and specific MCM transcripts undergo cell cycle‐dependent oscillations. Here we report the characterization of a planarian MCM2 homologue, DjMCM2, which represents the first molecular marker for detecting proliferating cells in planarians. DjMCM2‐expressing cells are broadly distributed in the mesenchymal space of the body, with the exception of the cephalic region, and are preferentially accumulated in the peripheral area of the dorso‐lateral mesenchyme, along the anteroposterior axis. During regeneration, no DjMCM2 transcripts are observed within the blastema, according to the current view that this structure is not a proliferation site in planarians. Spatio‐temporal changes in DjMCM2 RNA expression pattern in the stump parallel blastema growth, coordinately with the orientation of the cut. X‐ray irradiation results in the disappearance of DjMCM2 expression, thus confirming that these transcripts are detected specifically in proliferating cells, visualized as neoblasts by in situ hybridization in dissociated cells. In addition to neoblasts, rare large DjMCM2‐expressing cells are observed in macerates of tissues excised just below the wound, suggesting that cell types other than neoblasts may be sporadically recruited for proliferation in planarians.
Cellular and Molecular Life Sciences | 2008
Leonardo Rossi; Alessandra Salvetti; Renata Batistoni; Paolo Deri; Gremigni
Abstract.Planarians possess amazing abilities to regulate tissue homeostasis and regenerate missing body parts. These features reside on the presence of a population of pluripotent/totipotent stem cells, the neoblasts, which are considered as the only planarian cells able to proliferate in the asexual strains. Neoblast distribution has been identified by mapping the cells incorporating bromodeoxyuridine, analyzing mitotic figures and using cell proliferation markers. Recently identified molecular markers specifically label subgroups of neoblasts, revealing thus the heterogeneity of the planarian stem cell population. Therefore, the apparent totipotency of neoblasts probably reflects the composite activities of multiple stem cell types. First steps have been undertaken to understand how neoblasts and differentiated cells communicate with each other to adapt the self-renewal and differentiation rates of neoblasts to the demands of the body. Moreover, the introduction of molecular resource database on planarians now paves the way to renewed strategies to understand planarian regeneration and stem cell-related issues. (Part of a Multi-author Review)
Cellular and Molecular Life Sciences | 2007
Leonardo Rossi; Alessandra Salvetti; Renata Batistoni; Paolo Deri; Vittorio Gremigni
Abstract.Planarians possess amazing abilities to regulate tissue homeostasis and regenerate missing body parts. These features reside on the presence of a population of pluripotent/totipotent stem cells, the neoblasts, which are considered as the only planarian cells able to proliferate in the asexual strains. Neoblast distribution has been identified by mapping the cells incorporating bromodeoxyuridine, analyzing mitotic figures and using cell proliferation markers. Recently identified molecular markers specifically label subgroups of neoblasts, revealing thus the heterogeneity of the planarian stem cell population. Therefore, the apparent totipotency of neoblasts probably reflects the composite activities of multiple stem cell types. First steps have been undertaken to understand how neoblasts and differentiated cells communicate with each other to adapt the self-renewal and differentiation rates of neoblasts to the demands of the body. Moreover, the introduction of molecular resource database on planarians now paves the way to renewed strategies to understand planarian regeneration and stem cell-related issues. (Part of a Multi-author Review)
Developmental Biology | 2009
Maria Conte; Paolo Deri; Maria Emilia Isolani; Linda Mannini; Renata Batistoni
In adult organisms, stem cells are crucial to homeostasis and regeneration of damaged tissues. In planarians, adult stem cells (neoblasts) are endowed with an extraordinary replicative potential that guarantees unlimited replacement of all differentiated cell types and extraordinary regenerative ability. The molecular mechanisms by which neoblasts combine long-term stability and constant proliferative activity, overcoming the impact of time, remain by far unknown. Here we investigate the role of Djmot, a planarian orthologue that encodes a peculiar member of the HSP70 family, named Mortalin, on the dynamics of stem cells of Dugesia japonica. Planarian stem cells and progenitors constitutively express Djmot. Transient Djmot expression in differentiated tissues is only observed after X-ray irradiation. DjmotRNA interference causes inability to regenerate and death of the animals, as a result of permanent growth arrest of stem cells. These results provide the first evidence that an hsp-related gene is essential for neoblast viability and suggest the possibility that high levels of Djmot serve to keep a p53-like protein signaling under control, thus allowing neoblasts to escape cell death programs. Further studies are needed to unravel the molecular pathways involved in these processes.
Gene Expression Patterns | 2002
Alessandra Salvetti; Annalisa Lena; Leonardo Rossi; Paolo Deri; Antonella Cecchettini; Renata Batistoni; Vittorio Gremigni
Y-box proteins are conserved regulatory factors that play a key role in coordinating gene activity with protein synthesis by influencing both the transcription and translation of specific subsets of genes. We report the identification of a novel Y-box gene, DeY1, whose transcripts are found in the testes of sexual planarians. DeY1 is expressed in spermatogonia, spermatocytes and spermatids, while no expression is detected in spermatozoa. No DeY1 transcripts are found in the blastema during regeneration. The subcellular distribution of DeY1 protein was analyzed by electron microscope immunocytochemistry. Immunolabelling was found in the nucleus of spermatogonia, in both the nucleus and the cytoplasm of spermatocytes, and in the cytoplasm of spermatids.
Histochemistry and Cell Biology | 1976
Franco Giorgi; Paolo Deri
SummaryLate ovarian chambers of Drosophila melanogaster have been examined by ultrastructural cytochemistry in an attempt to characterize some of the transformations which precede the completion of oogenesis. From stage 11 onward peroxidase activity is present in the endoplasmic reticulum of both nurse cells and oocyte, as well as in the egg-covering precursors of the columnar follicle cells. Catalase activity is restricted to the very last stages of oogenesis (stage 13–14) and appears to be located in membrane-bound organelles of the ooplasm which are continuous with the endoplasmic reticulum. Because of the presence of catalase as well as by their structural appearance, these organelles are to be identified as microperoxisomes. Catalase activity becomes cytochemically detectable in the ooplasm somehow in coincidence with the formation of glycogen. Furthermore, glycogen is first formed in intimate association with alpha-1 yolk platelets. On the basis of these findings it is suggested that glycogen synthesis occurs by a process of gluconeogenesis.
PLOS ONE | 2013
Maria Emilia Isolani; Josep F. Abril; Emili Saló; Paolo Deri; Anna Maria Bianucci; Renata Batistoni
Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies.