Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renata Batistoni is active.

Publication


Featured researches published by Renata Batistoni.


Development | 2005

DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance

Alessandra Salvetti; Leonardo Rossi; Annalisa Lena; Renata Batistoni; Paolo Deri; Giuseppe Rainaldi; Maria Teresa Fernanda Locci; Monica Evangelista; Vittorio Gremigni

As stem cells are rare and difficult to study in vivo in adults, the use of classical models of regeneration to address fundamental aspects of the stem cell biology is emerging. Planarian regeneration, which is based upon totipotent stem cells present in the adult – the so-called neoblasts– provides a unique opportunity to study in vivo the molecular program that defines a stem cell. The choice of a stem cell to self-renew or differentiate involves regulatory molecules that also operate as translational repressors, such as members of PUF proteins. In this study, we identified a homologue of the Drosophila PUF gene Pumilio (DjPum) in the planarian Dugesia japonica, with an expression pattern preferentially restricted to neoblasts. Through RNA interference (RNAi), we demonstrate that gene silencing of DjPum dramatically reduces the number of neoblasts, thus supporting the intriguing hypothesis that stem cell maintenance may be an ancestral function of PUF proteins.


Development Genes and Evolution | 2006

DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells

Leonardo Rossi; Alessandra Salvetti; Annalisa Lena; Renata Batistoni; Paolo Deri; Claudio Pugliesi; Elena Loreti; Vittorio Gremigni

Planarian regeneration, based upon totipotent stem cells, the neoblasts, provides a unique opportunity to study in vivo the molecular program that defines a stem cell. In this study, we report the identification of DjPiwi-1, a planarian homologue of Drosophila Piwi. Expression analysis showed that DjPiwi-1 transcripts are preferentially accumulated in small cells distributed along the midline of the dorsal parenchyma. DjPiwi-1 transcripts were not detectable after X-ray irradiation by whole mount in situ hybridization. Real time reverse transcriptase polymerase chain reaction analysis confirmed the significant reduction of DjPiwi-1 expression after X-ray treatment. However, the presence of residual DjPiwi-1 transcription suggests that, although the majority of DjPiwi-1-positive cells can be neoblasts, this gene is also expressed in differentiating/differentiated cells. During regeneration DjPiwi-1-positive cells reorganize along the midline of the stump and no accumulation of hybridization signal was observed either in the blastema area or in the parenchymal region beneath the blastema. DjPiwi-1-positive cells, as well as the DjMCM2-expressing neoblasts located along the midline and those spread all over the parenchyma, showed a lower tolerance to X-ray with respect to the DjMCM2-expressing neoblasts distributed along the lateral lines of the parenchyma. Taken together, these findings suggest the presence of different neoblast subpopulations in planarians.


Genome Biology | 2007

Deciphering the molecular machinery of stem cells: a look at the neoblast gene expression profile.

Leonardo Rossi; Alessandra Salvetti; Francesco M. Marincola; Annalisa Lena; Paolo Deri; Linda Mannini; Renata Batistoni; Ena Wang; Vittorio Gremigni

BackgroundMammalian stem cells are difficult to access experimentally; model systems that can regenerate offer an alternative way to characterize stem cell related genes. Planarian regeneration depends on adult pluripotent stem cells - the neoblasts. These cells can be selectively destroyed using X-rays, enabling comparison of organisms lacking stem cells with wild-type worms.ResultsUsing a genomic approach we produced an oligonucleotide microarray chip (the Dj600 chip), which was designed using selected planarian gene sequences. Using this chip, we compared planarians treated with high doses of X-rays (which eliminates all neoblasts) with wild-type worms, which led to identification of a set of putatively neoblast-restricted genes. Most of these genes are involved in chromatin modeling and RNA metabolism, suggesting that epigenetic modifications and post-transcriptional regulation are pivotal in neoblast regulation. Comparing planarians treated with low doses of X-rays (after which some radiotolerant neoblasts re-populate the planarian body) with specimens irradiated with high doses and unirradiated control worms, we identified a group of genes that were upregulated as a consequence of low-dose X-ray treatment. Most of these genes encode proteins that are known to regulate the balance between death and survival of the cell; our results thus suggest that genetic programs that control neoblast cytoprotection, proliferation, and migration are activated by low-dose X-rays.ConclusionThe broad differentiation potential of planarian neoblasts is unparalleled by any adult stem cells in the animal kingdom. In addition to our validation of the Dj600 chip as a valuable platform, our work contributes to elucidating the molecular mechanisms that regulate the self-renewal and differentiation of neoblasts.


Developmental Dynamics | 2000

An MCM2‐related gene is expressed in proliferating cells of intact and regenerating planarians

Alessandra Salvetti; Leonardo Rossi; Paolo Deri; Renata Batistoni

The minichromosome maintenance (MCM2‐7) gene family encodes conserved proteins, which are essential for DNA replication licensing in eukaryotes. They are abundant in proliferating cells, and specific MCM transcripts undergo cell cycle‐dependent oscillations. Here we report the characterization of a planarian MCM2 homologue, DjMCM2, which represents the first molecular marker for detecting proliferating cells in planarians. DjMCM2‐expressing cells are broadly distributed in the mesenchymal space of the body, with the exception of the cephalic region, and are preferentially accumulated in the peripheral area of the dorso‐lateral mesenchyme, along the anteroposterior axis. During regeneration, no DjMCM2 transcripts are observed within the blastema, according to the current view that this structure is not a proliferation site in planarians. Spatio‐temporal changes in DjMCM2 RNA expression pattern in the stump parallel blastema growth, coordinately with the orientation of the cut. X‐ray irradiation results in the disappearance of DjMCM2 expression, thus confirming that these transcripts are detected specifically in proliferating cells, visualized as neoblasts by in situ hybridization in dissociated cells. In addition to neoblasts, rare large DjMCM2‐expressing cells are observed in macerates of tissues excised just below the wound, suggesting that cell types other than neoblasts may be sporadically recruited for proliferation in planarians.


Chromosoma | 1987

Chromosome banding in Amphibia: XI. Constitutive heterochromatin, nucleolus organizers, 18S + 28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae and Pelobatidae

M. Schmid; Luigi Vitelli; Renata Batistoni

The karyotypes of 14 species of Anura from 9 genera of the suborders Amphicoela, Aglossa, Opisthocoela and Anomocoela were analysed with various banding techniques and conventional cytogenetic methods. The 18S + 28S and 5S ribosomal RNA genes were localized by means of in situ hybridization. No Q-, R- and G-banding patterns in the euchromatic segments of the metaphase chromosomes could be demonstrated in any of the species; this does not seem to be caused by a higher degree of spiralization of the amphibian chromosomes, but by the special DNA organization in these organisms. In most karyotypes, constitutive heterochromatin is present at centromeres, telomeres and nucleolus organizer regions (NORs), but rarely in interstitial positions. The heterochromatic regions are either quinacrine positive and mithramycin negative or vice versa. All species examined possess only one homologous pair of NORs; these display the brightest mithramycin fluorescence in the karyotypes. Many specimens exhibited unequal labelling of the two NORs both after silver and mithramycin staining as well as after in situ hybridization with 3H-18S + 28S rRNA. In four species, between one and six chromosome pairs with homologous 5S rRNA sites could be identified. The 5S rRNA genes and the 18S + 28S rRNA genes are closely linked in two species. In the male meiosis of the Amphicoela and Opisthocoela, there are intersitial, subterminal and terminal chiasmata in the bivalents, whereas only terminal chiasmata are observed in the bivalents of the Aglossa and Anomocoela. No heteromorphic sex-specific chromosomes could be demonstrated in any of the species. The differential staining techniques revealed that the chromosomal structure in these four suborders is largely the same as in the highly evolved anuran suborders Procoela and Diplasiocoela.


Chromosoma | 1977

Chromosome location of the ribosomal RNA genes in Triturus vulgaris meridionalis (Amphibia, Urodela)

G. Barsacchi-Pilone; Irma Nardi; F. Andronico; Renata Batistoni; M. Durante

The mitotic chromosomes of six specimens from Triturus vulgaris meridionalis have been examined by both in situ hybridization with 3H 18S+28S rRNA and AS-SAT staining method. The results of these two sets of experiments can be summarized as follows: 1) in each specimen the NORs and the additional ribosomal sites, which react positively to in situ hybridization with 3H 18S + 28S rRNA, are also stained by silver; 2) other chromosomal regions, which do not hybridize in situ with 3H 18S+28S rRNA, are on the other hand stained by the AS-SAT method. These latter Ag-positive sites show a species-specific pattern of chromosomal distribution.


Chromosoma | 1982

Chromosomal localization of 18S + 28S and 5S ribosomal RNA genes in evolutionarily diverse anuran amphibians

Luigi Vitelli; Renata Batistoni; F. Andronico; Irma Nardi; G. Barsacchi-Pilone

The chromosomal locations of the 18S + 28S and 5S ribosomal RNA genes have been analyzed by in situ hybridization in ten anuran species of different taxonomic positions. The chosen species belong to both primitive and evolved families of the present day Anura. Each examined species has 18S + 28S rRNA genes clustered in one locus per haploid chromosome set: this locus is placed either in an intercalary position or proximal to the centromere, or close to the telomere. The 5S rRNA genes are arranged in clusters which vary in number from one to six per haploid set. The 5S rDNA sites are found in intercalary positions, at the telomeres, and at, or close to, the centromeres. Microchromosomes and small chromosomes in primitive karyotypes have been found to carry 5S rDNA sequences. The results are discussed in relation to ideas on the karyological evolution of Amphibia.


Cellular and Molecular Life Sciences | 2008

Planarians, a tale of stem cells

Leonardo Rossi; Alessandra Salvetti; Renata Batistoni; Paolo Deri; Gremigni

Abstract.Planarians possess amazing abilities to regulate tissue homeostasis and regenerate missing body parts. These features reside on the presence of a population of pluripotent/totipotent stem cells, the neoblasts, which are considered as the only planarian cells able to proliferate in the asexual strains. Neoblast distribution has been identified by mapping the cells incorporating bromodeoxyuridine, analyzing mitotic figures and using cell proliferation markers. Recently identified molecular markers specifically label subgroups of neoblasts, revealing thus the heterogeneity of the planarian stem cell population. Therefore, the apparent totipotency of neoblasts probably reflects the composite activities of multiple stem cell types. First steps have been undertaken to understand how neoblasts and differentiated cells communicate with each other to adapt the self-renewal and differentiation rates of neoblasts to the demands of the body. Moreover, the introduction of molecular resource database on planarians now paves the way to renewed strategies to understand planarian regeneration and stem cell-related issues. (Part of a Multi-author Review)


Cellular and Molecular Life Sciences | 2007

Molecular and Cellular Basis of Regeneration and Tissue Repair

Leonardo Rossi; Alessandra Salvetti; Renata Batistoni; Paolo Deri; Vittorio Gremigni

Abstract.Planarians possess amazing abilities to regulate tissue homeostasis and regenerate missing body parts. These features reside on the presence of a population of pluripotent/totipotent stem cells, the neoblasts, which are considered as the only planarian cells able to proliferate in the asexual strains. Neoblast distribution has been identified by mapping the cells incorporating bromodeoxyuridine, analyzing mitotic figures and using cell proliferation markers. Recently identified molecular markers specifically label subgroups of neoblasts, revealing thus the heterogeneity of the planarian stem cell population. Therefore, the apparent totipotency of neoblasts probably reflects the composite activities of multiple stem cell types. First steps have been undertaken to understand how neoblasts and differentiated cells communicate with each other to adapt the self-renewal and differentiation rates of neoblasts to the demands of the body. Moreover, the introduction of molecular resource database on planarians now paves the way to renewed strategies to understand planarian regeneration and stem cell-related issues. (Part of a Multi-author Review)


Chromosoma | 1974

Chromosome location of the genes for 28S, 18S and 5S ribosomal RNA in Triturus marmoratus (Amphibia Urodela).

Giuseppina Barsacchi Pilone; Irma Nardi; Renata Batistoni; Francesca Andronico; Elena Beccari

The localization of the 28S, 18S and 5S rRNA genes in the mitotic chromosomes, and of the 5S rRNA genes in the lampbrush chromosomes of Triturus marmoratus has been studied by RNA/DNA in situ hybridization. The 28S and 18S genes are located in a subterminal position, and the 5S genes in an intermediate position, on the long arm of mitotic chromosome X. In situ hybridization on lampbrush chromosomes has shown that the 5S genes are located at or near a dense matrix loop landmark. The cytogenetic implications of these findings are briefly discussed.

Collaboration


Dive into the Renata Batistoni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emili Saló

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge