Paolo Margaria
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo Margaria.
Molecular Plant-microbe Interactions | 2007
Paolo Margaria; M. Ciuffo; D. Pacifico; Massimo Turina
All known pepper cultivars resistant to Tomato spotted wilt virus (TSWV) possess a single dominant resistance gene, Tsw. Recently, naturally occurring resistance-breaking (RB) TSWV strains have been identified, causing major concerns. We used a collection of such strains to identify the specific genetic determinant that allows the virus to overcome the Tsw gene in Capsicum spp. A reverse genetic approach is still not feasible for TSWV; therefore, we analyzed reassortants between wild-type (WT) and RB strains. Our results confirmed that the S RNA, which encodes both the nucleocapsid protein (N) and a nonstructural protein (NSs), carries the genetic determinant responsible for Tsw resistance breakdown. We then used full-length S RNA segments or the proteins they encode to compare the sequences of WT and related RB strains, and obtained indirect evidence that the NSs protein is the avirulence factor in question. Transient expression of NSs protein from WT and RB strains showed that they both can equally suppress post-transcriptional gene silencing (PTGS). Moreover, biological characterization of two RB strains carrying deletions in the NSs protein showed that NSs is important in maintaining TSWV infection in newly emerging leaves over time, preventing recovery. Analysis of another RB strain phenotype allowed us to conclude that local necrotic response is not sufficient for resistance in Capsicum spp. carrying the Tsw gene.
Proteomics | 2011
Paolo Margaria; Sabrina Palmano
Flavescence dorée is a serious phytoplasma disease affecting grapevine in several European countries. We studied the interaction of Flavescence dorée phytoplasma with its natural plant host by monitoring the effects of infection on the protein expression profile. Among the 576 analyzed spots, 33 proteins were differentially regulated in infected grapevines. Grouping into MIPS functional categories showed proteins involved in metabolism (21%), energy processes (9%), protein synthesis (3%), protein fate (18%), cellular transport and transport routes (6%), cell defense and virulence (42%). Among the differentially regulated proteins, we selected six targets (thaumatin I, thaumatin II, osmotin‐like protein, plant basic secretory protein, AAA+ Rubisco activase and proteasome α5 subunit) and we analyzed their expression by quantitative RT‐PCR on samples collected in 2008 and 2009 in several vineyards in Piedmont region, Italy. There was a positive correlation between mRNA and protein expression for most of the genes in both the years. We discuss the involvement of these proteins in the specific response to phytoplasma infection. To our knowledge, this work is the first to investigate the response of the grapevine proteome to Flavescence dorée phytoplasma infection, and provides reference protein profiles for future comparative proteomic and genomic studies.
BMC Genomics | 2013
Paolo Margaria; Simona Abbà; Sabrina Palmano
BackgroundTranslational and post-translational protein modifications play a key role in the response of plants to pathogen infection. Among the latter, phosphorylation is critical in modulating protein structure, localization and interaction with other partners. In this work, we used a multiplex staining approach with 2D gels to study quantitative changes in the proteome and phosphoproteome of Flavescence dorée-affected and recovered ‘Barbera’ grapevines, compared to healthy plants.ResultsWe identified 48 proteins that differentially changed in abundance, phosphorylation, or both in response to Flavescence dorée phytoplasma infection. Most of them did not show any significant difference in recovered plants, which, by contrast, were characterized by changes in abundance, phosphorylation, or both for 17 proteins not detected in infected plants. Some enzymes involved in the antioxidant response that were up-regulated in infected plants, such as isocitrate dehydrogenase and glutathione S-transferase, returned to healthy-state levels in recovered plants. Others belonging to the same functional category were even down-regulated in recovered plants (oxidoreductase GLYR1 and ascorbate peroxidase). Our proteomic approach thus agreed with previously published biochemical and RT-qPCR data which reported down-regulation of scavenging enzymes and accumulation of H2O2 in recovered plants, possibly suggesting a role for this molecule in remission from infection. Fifteen differentially phosphorylated proteins (| ratio | > 2, p < 0.05) were identified in infected compared to healthy plants, including proteins involved in photosynthesis, response to stress and the antioxidant system. Many were not differentially phosphorylated in recovered compared to healthy plants, pointing to their specific role in responding to infection, followed by a return to a steady-state phosphorylation level after remission of symptoms. Gene ontology (GO) enrichment and statistical analysis showed that the general main category “response to stimulus” was over-represented in both infected and recovered plants but, in the latter, the specific child category “response to biotic stimulus” was no longer found, suggesting a return to steady-state levels for those proteins specifically required for defence against pathogens.ConclusionsProteomic data were integrated into biological networks and their interactions were represented through a hypothetical model, showing the effects of protein modulation on primary metabolic ways and related secondary pathways. By following a multiplex-staining approach, we obtained new data on grapevine proteome pathways that specifically change at the phosphorylation level during phytoplasma infection and following recovery, focusing for the first time on phosphoproteome changes during pathogen infection in this host.
Journal of Virology | 2014
Paolo Margaria; Lara Bosco; Marta Vallino; M. Ciuffo; G.C. Mautino; Massimo Turina
ABSTRACT Tomato spotted wilt virus (TSWV) is the type member of tospoviruses (genus Tospovirus), plant-infecting viruses that cause severe damage to ornamental and vegetable crops. Tospoviruses are transmitted by thrips in the circulative propagative mode. We generated a collection of NSs-defective TSWV isolates and showed that TSWV coding for truncated NSs protein could not be transmitted by Frankliniella occidentalis. Quantitative reverse transcription (RT)-PCR and immunostaining of individual insects detected the mutant virus in second-instar larvae and adult insects, demonstrating that insects could acquire and accumulate the NSs-defective virus. Nevertheless, adults carried a significantly lower viral load, resulting in the absence of transmission. Genome sequencing and analyses of reassortant isolates showed genetic evidence of the association between the loss of competence in transmission and the mutation in the NSs coding sequence. Our findings offer new insight into the TSWV-thrips interaction and Tospovirus pathogenesis and highlight, for the first time in the Bunyaviridae family, a major role for the S segment, and specifically for the NSs protein, in virulence and efficient infection in insect vector individuals. IMPORTANCE Our work is the first to show a role for the NSs protein in virus accumulation in the insect vector in the Bunyaviridae family: demonstration was obtained for the system TSWV-F. occidentalis, arguably one of the most damaging combination for vegetable crops. Genetic evidence of the involvement of the NSs protein in vector transmission was provided with multiple approaches.
Virus Research | 2016
Luca Nerva; M. Ciuffo; Marta Vallino; Paolo Margaria; Giovanna Cristina Varese; Giorgio Gnavi; Massimo Turina
The number of reported mycoviruses is increasing exponentially due to the current ability to detect mycoviruses using next-generation sequencing (NGS) approaches, with a large number of viral genomes built in-silico using data from fungal transcriptome projects. We decided to screen a collection of fungi originating from a specific marine environment (associated with the seagrass Posidonia oceanica) for the presence of mycoviruses: our findings reveal a wealth of diversity among these symbionts and this complexity will require further studies to address their specific role in this ecological niche. In specific, we identified twelve new virus species belonging to nine distinct lineages: they are members of megabirnavirus, totivirus, chrysovirus, partitivirus and five still undefined clades. We showed evidence of an endogenized virus ORF, and evidence of accumulation of dsRNA from metaviridae retroviral elements. We applied different techniques for detecting the presence of mycoviruses including (i) dsRNA extraction and cDNA cloning, (ii) small and total RNA sequencing through NGS techniques, (iii) rolling circle amplification (RCA) and total DNA extraction analyses, (iv) virus purifications and electron microscopy. We tried also to critically evaluate the intrinsic value and limitations of each of these techniques. Based on the samples we could compare directly, RNAseq analysis is superior to sRNA for de novo assembly of mycoviruses. To our knowledge this is the first report on the virome of fungi isolated from marine environment. The GenBank/eMBL/DDBJ accession numbers of the sequences reported in this paper are: KT601099-KT601110; KT601114-KT601120; KT592305; KT950836-KT950841.
Plant Disease | 2007
Paolo Margaria; Cristina Rosa; Cristina Marzachì; Massimo Turina; Sabrina Palmano
Flavescence dorée (FD) is the most serious phytoplasma disease of grapevine. This report describes a novel method of detecting FD phytoplasma based on reverse-transcription polymerase chain reaction (RT-PCR) on 16S ribosomal RNA (16SrRNA) which will greatly improve mass screening of infected grapevines. A rapid protocol for extracting sap from whole leaves or midveins and successive one-tube amplification by RT-PCR was applied to grapevine samples with or without symptoms collected from different areas of Piedmont (northwestern Italy). Results were compared with those obtained using one of the current diagnostic methods that utilizes nested PCR on phytoplasma DNA-enriched preparations. A Cohens kappa index of 0.76 indicated a substantial agreement between the two sets of results. The RT-PCR method has the advantage of being a rapid, reliable, and sensitive assay for large-scale screening of grapevines.
Plant Cell and Environment | 2014
Paolo Margaria; Alessandra Ferrandino; Piero Caciagli; Olga Kedrina; Andrea Schubert; Sabrina Palmano
Flavescence dorée phytoplasma (FDp) infections seriously affect production and survival of grapevine. We analysed the changes in the flavonoid pathway occurring in two red cultivars, the highly susceptible Barbera and the less susceptible Nebbiolo, following FDp infection. A combination of metabolic and transcript analyses was used to quantify flavonoid compounds and expression of a set of genes involved in their biosynthesis. Quantification of anthocyanins, flavonols, proanthocyanidins and related biosynthetic enzymes was performed over the vegetative season, at four time points, on healthy, infected and recovered plants. A strong activation of anthocyanin accumulation was observed in infected Barbera leaves, while the response was less marked in Nebbiolo. Proanthocyanidins also accumulated mainly in infected Barbera leaves, even if basal proanthocyanidin concentration was higher in healthy and recovered Nebbiolo. Biochemical data were supported by transcript analysis: genes of the stem flavonoid pathway and of the anthocyanin and proanthocyanidin branches were expressed at a higher level in infected than in healthy plants, with a different magnitude between the two cultivars. Based on our results, we hypothesize that flavonoid accumulation is a physiological consequence of FD infection without affecting phytoplasma multiplication, although proanthocyanidin accumulation could help repel further infection by the insect vector.
Virus Research | 2016
Paolo Margaria; Laura Miozzi; M. Ciuffo; Cristina Rosa; Michael J. Axtell; Hanu R. Pappu; Massimo Turina
Viral small RNAs (vsRNAs) are one of the key elements involved in RNA silencing-based defense against viruses in plants. We analyzed the vsRNA profiles in Nicotiana benthamiana and Solanum lycopersicum infected by polygonum ringspot virus (PolRSV) (Tospovirus, Bunyaviridae). VsRNAs were abundant in both hosts, but a different size profile was observed, with an abundance peak at 21 in N. benthamiana and at 22 nt in tomato. VsRNAs mapping to the PolRSV L genomic segment were under-represented in both hosts, while S and M segments were differentially and highly targeted in N. benthamiana and tomato, respectively. Differences in preferential targeting of single ORFs were observed, with over-representation of NSs ORF-derived reads in N. benthamiana. Intergenic regions (IGRs)-mapping vsRNAs were under-represented, while enrichment of vsRNAs reads mapping to the NSs positive sense strand was observed in both hosts. Comparison with a previous study on tomato spotted wilt virus (TSWV) under the same experimental conditions, showed that the relative accumulation of PolRSV-specific and endogenous sRNAs was similar to the one observed for silencing suppressor-deficient TSWV strains, suggesting possible different properties of PolRSV NSs silencing suppressor compared to that of TSWV.
Virus Research | 2015
Paolo Margaria; M. Ciuffo; Cristina Rosa; Massimo Turina
A Tsw resistance-breaking tomato spotted wilt virus field isolate (TSWV-p331) found in northern Italy originated via reassortment from two evolutionary distinct TSWV strains, as revealed by recombination and phylogenetic analysis. Compared to the closest isolate present in the database, p331 NSs protein carries an unusually high number of amino acid substitutions, but no differences in the nucleocapsid protein. Despite these substitutions, p331 NSs is a potent silencing suppressor. As shown by phylogenetic analyses of TSWV nucleocapsid sequences collected over fifteen years, one likely p331 parental lineage has never been detected in northern Italy, allowing speculations on the origin of TSWV-p331.
American Journal of Enology and Viticulture | 2011
Cristina Rosa; Jorge F. Jimenez; Paolo Margaria; Adib Rowhani
The rootstocks Vitis rupestris cv. St. George, Kober 5BB, LN33, and Freedom were graft-inoculated with viruses associated with the rugose wood complex (RW) to study their growth response and symptom expression. The virus sources used in this study were isolates LR127, CB111, CB105, and PA94-142 for Grapevine virus A (GVA), CB120 for Grapevine virus B (GVB), LV92-07 and a field selection of Chardonnay for Grapevine virus D (GVD), and a field selection of Cabernet Sauvignon for Grapevine rupestris stem pitting-associated virus (GRSPaV). Each rootstock plant was graft-inoculated with one, two, or three virus sources using bud chips from virus-infected grapevines. Plants were planted following a partially randomized block design. After two years, plant diameter was measured, barks were removed, and the woody cylinders were observed for the presence of RW symptoms and rated based on symptom severity. Selected plants were also tested by RT-PCR. The study showed that the greatest reduction in trunk diameter was in plants inoculated with the virus source combination of GVB/GVD/GRSPaV regardless of the rootstock type. Furthermore, treatments GVB/GVD, GVA/GVB/GVD and GVB/GVD/GRSPaV had the highest effect on LN33 growth, and GVA/GVB/GRSPaV, GVB/GVD/GRSPaV, and GVA/GVB had the highest growth effects on Kober 5BB. In general, GVB source had more adverse effect on growth in multiple infections, particularly in triple combination. In treatments with single virus source, GVD showed severe growth reduction in Freedom with no symptoms on the woody cylinder of the plants. Some sources of GVA impaired the growth of both Kober 5BB and Freedom rootstocks.