Paolo Mezzanotte
University of Perugia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo Mezzanotte.
IEEE Transactions on Microwave Theory and Techniques | 1996
P. Ciampolini; Paolo Mezzanotte; Luca Roselli; Roberto Sorrentino
A three-dimensional (3-D) implementation of the lumped-element finite-difference time-domain (FDTD) algorithm has been carried out. To accomplish proper description of device dynamic responses, the code incorporates accurate models of lumped bipolar devices, including nonlinear capacitances associated with pn and Schottky junctions. The nonlinear system arising from discretized lumped-element equations is solved by means of an iterative Newton-Raphson algorithm, the convergence properties of which are sensitive to the value of the simulation time step. The computational efficiency of the algorithm (as well as its robustness) has significantly been enhanced by introducing an adaptive time-step algorithm, which dynamically adjusts the time-step itself to ensure convergence during the simulation. Several simulation examples are compared with conventional analysis techniques and demonstrate the algorithm reliability as well as its increased efficiency.
IEEE Transactions on Microwave Theory and Techniques | 2001
Federico Alimenti; Paolo Mezzanotte; Luca Roselli; Roberto Sorrentino
In this paper, the bonding-wire interconnection has been studied from the points of view of its modeling and electrical characterization. Both singleand double-wire structures have been considered, the latter under the assumption of parallel wires. Two electrical models of the bonding wire are discussed. First, the finite-difference time-domain (FDTD) method is proposed for the rigorous analysis of such structures. This method uses a suitable discretization technique, which accounts for the wire curvature by means of a polygonal approximation. A quasi-static model of the bonding wire, suitable for commercial microwave computer-aided-design tools is then proposed. This model is based on the representation of the structure with four sections of a uniform transmission line and the model parameters are evaluated analytically from the dimensions of the interconnection. Accuracy and applicability of the quasi-static model have been assessed by analyzing several test structures, the reference results being obtained with the FDTD method. Finally, the quasi-static model has been used to provide an extensive electrical characterization of the bonding wire versus its main geometrical parameters. This characterization is given in terms of an equivalent series inductance and two equivalent shunt capacitances forming a /spl pi/ low-pass network. This representation is particularly useful in the matching of the bonding-wire discontinuity.
IEEE Transactions on Microwave Theory and Techniques | 2014
Nuno Borges Carvalho; Apostolos Georgiadis; Alessandra Costanzo; Hendrik Rogier; Ana Collado; José Ángel García García; Stepan Lucyszyn; Paolo Mezzanotte; Jan Kracek; Diego Masotti; Alírio Soares Boaventura; María de las Nieves Ruiz Lavín; Manuel Pinuela; David C. Yates; Paul D. Mitcheson; Milos Mazanek; Vitezslav Pankrac
Wireless power transmission (WPT) is an emerging technology that is gaining increased visibility in recent years. Efficient WPT circuits, systems and strategies can address a large group of applications spanning from batteryless systems, battery-free sensors, passive RF identification, near-field communications, and many others. WPT is a fundamental enabling technology of the Internet of Things concept, as well as machine-to-machine communications, since it minimizes the use of batteries and eliminates wired power connections. WPT technology brings together RF and dc circuit and system designers with different backgrounds on circuit design, novel materials and applications, and regulatory issues, forming a cross disciplinary team in order to achieve an efficient transmission of power over the air interface. This paper aims to present WPT technology in an integrated way, addressing state-of-the-art and challenges, and to discuss future R&D perspectives summarizing recent activities in Europe.
IEEE Transactions on Microwave Theory and Techniques | 1999
José A. Pereda; Federico Alimenti; Paolo Mezzanotte; Luca Roselli; Roberto Sorrentino
The inclusion of lumped elements, both linear and nonlinear, into the finite-difference time-domain (FDTD) algorithm has been recently made possible by the introduction of the lumped element FDTD method. Such a method, however, cannot efficiently and accurately account for two-terminal networks made of several lumped elements, arbitrarily connected together. This limitation can be removed as proposed in this paper by describing the network in terms of its impedance in the Laplace domain and by using appropriate digital signal-processing methodologies to fit the resulting description to Yees algorithm. The resulting difference equations allow an arbitrary two-terminal network to be inserted into one FDTD cell, preserving the full explicit nature of the conventional FDTD scheme and requiring a minimum number of additional storage variables. The new approach has been validated by comparison with the exact solution of a parallel-plate waveguide loaded with lumped networks in the transverse plane.
IEEE Microwave Magazine | 2013
Sangkil Kim; Chiara Mariotti; Federico Alimenti; Paolo Mezzanotte; Apostolos Georgiadis; Ana Collado; Luca Roselli; Manos M. Tentzeris
Over the last decade, radio frequency identification (RFID) systems have been increasingly used for identification and object tracking due to their low-power, low-cost wireless features. In addition, the explosive demand for ubiquitous rugged low-power, compact wireless sensors for Internet-of-Things, ambient intelligence, and biomonitoring/ quality-of-life application has sparked a plethora of research efforts to integrate sensors with an RFID-enabled platform. The rapid evolution of large-area electronics printing technologies (e.g., ink-jet printing and gravure printing) has enhanced the development of low-cost RFID-enabled sensors as well as accelerated their large-scale deployment. This article presents a brief overview of the recent progress in the area of RFID-based sensor systems and especially the state-of-the-art RFID-enabled wireless sensor tags realized through the use of ink-jet printing technology.
IEEE Microwave and Guided Wave Letters | 1995
Paolo Mezzanotte; Luca Roselli; Roberto Sorrentino
The conventional FDTD algorithm in Cartesian coordinates uses staircase approximation to treat curvilinear surfaces. This approximation causes loss of accuracy often unacceptable. An extremely simple and more accurate polygonal approximation of curved surfaces is proposed in this paper. The method improves significantly the accuracy of the original FDTD algorithm, without increasing its complexity. >
IEEE Transactions on Microwave Theory and Techniques | 2011
Federico Alimenti; Marco Virili; Giulia Orecchini; Paolo Mezzanotte; V. Palazzari; Manos M. Tentzeris; Luca Roselli
This paper deals with a low-cost method for the assembly of flexible substrate antennas and UHF RF identification silicon (Si) chips. Such a method exploits a magnetic coupling mechanism, thus not requiring for galvanic contacts between the Si chip and antenna itself. The magnetic coupling is established by a planar transformer, the primary and secondary windings of which are implemented on flexible substrate and Si chip, respectively. As a result, the Si chip can be assembled on the antenna with a mere placing and gluing process. First, the idea has been validated by theory. Electromagnetic simulations of a square heterogeneous transformer (1.0-mm side) show a maximum available power gain (MAG) of -0.4 dB at 868 MHz. In addition, the heterogeneous transformer is also quite tolerant with respect to misalignment between primary and secondary. An offset error of 150 μm reduces the MAG to - 0.5 dB. A sub-optimal matching strategy, exploiting a simple on-chip capacitor, is then developed for antennas with 50- Ω input impedances. Finally, the idea has been experimentally validated exploiting printed circuit board (PCB) prototypes. A PCB transformer (1.5-mm side) and a transformer rectifier (two-diode Dickson multiplier) have been fabricated and tested. Measurements indicates a MAG of -0.3 dB at 868 MHz for the transformer and the capability of the developed rectifier to supply a 220-kΩ load at 1.5 V with a - 2-dBm input power.
IEEE Microwave and Wireless Components Letters | 2012
Federico Alimenti; Paolo Mezzanotte; Marco Dionigi; Marco Virili; Luca Roselli
In this work, a new technique to fabricate microwave circuits in paper substrates is proposed. This technique relies on a copper adhesive tape that is shaped by a photo-lithographic process and then transferred to the hosting substrate by means of a sacrificial layer. Microstrip lines in paper substrates have been electromagnetically characterized accounting also for the adhesive layers. Experimental results show an insertion loss better than 0.6 dB/cm at 10 GHz.
IEEE Transactions on Microwave Theory and Techniques | 1996
Wolfgang Heinrich; K. Beilenhoff; Paolo Mezzanotte; Luca Roselli
The coarseness error of the finite-difference (FD) method is studied analyzing a typical planar waveguide and a rectangular coaxial geometry. Results for equidistant and graded mesh are compared in terms of accuracy and numerical efforts. Because of the field singularities involved a graded mesh proves to be superior compared to the equidistant case. A grading strategy with optimum efficiency is presented. Furthermore, the results show that the most significant improvement in accuracy can be obtained by incorporating the edge behavior into the FD scheme.
IEEE Transactions on Microwave Theory and Techniques | 2000
Federico Alimenti; Paolo Mezzanotte; Luca Roselli; Roberto Sorrentino
A revised formulation of modal absorbing and matched modal source boundary condition is proposed for the efficient analysis of a waveguide circuit with the finite-difference time-domain (FDTD) method. The formulation is based on a suitable translation operator modeling, in time domain, the propagation in a uniform hollow waveguide. By applying this operator, a multimodal absorbing boundary condition is obtained. Moreover, a source algorithm is developed that generates a given incident wave, while absorbing each modal component reflected from a discontinuity. The source is capable of separating incident and reflected waves without requiring any presimulation of long uniform waveguides. The validity and effectiveness of the formulation is verified by means of three numerical experiments. The first two refer to waveguide discontinuities. In these cases, the FDTD results are compared to mode-matching results. The third example is a transition from waveguide to printed circuit transmission line. The numerical simulation is compared with published experimental results. The presented examples show that the generalized scattering matrix of a waveguide circuit can be evaluated accurately in the smallest computational space allowed by the structure.