Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo P. Provenzano is active.

Publication


Featured researches published by Paolo P. Provenzano.


Cancer Cell | 2012

Enzymatic Targeting of the Stroma Ablates Physical Barriers to Treatment of Pancreatic Ductal Adenocarcinoma

Paolo P. Provenzano; Carlos Cuevas; Amy E. Chang; Vikas K. Goel; Daniel D. Von Hoff; Sunil R. Hingorani

Pancreatic ductal adenocarcinomas (PDAs) are characterized by a robust fibroinflammatory response. We show here that this desmoplastic reaction generates inordinately high interstitial fluid pressures (IFPs), exceeding those previously measured or theorized for solid tumors, and induces vascular collapse, while presenting substantial barriers to perfusion, diffusion, and convection of small molecule therapeutics. We identify hyaluronan, or hyaluronic acid (HA), as the primary matrix determinant of these barriers and show that systemic administration of an enzymatic agent can ablate stromal HA from autochthonous murine PDA, normalize IFP, and re-expand the microvasculature. In combination with the standard chemotherapeutic, gemcitabine, the treatment permanently remodels the tumor microenvironment and consistently achieves objective tumor responses, resulting in a near doubling of overall survival.


BMC Medicine | 2006

Collagen reorganization at the tumor-stromal interface facilitates local invasion

Paolo P. Provenzano; Kevin W. Eliceiri; Jay M Campbell; David R. Inman; John G. White; Patricia J. Keely

BackgroundStromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion. Moreover, collagen-dense breast tissue increases the risk of breast carcinoma, although the relationship between collagen density and tumorigenesis is not well understood. As little is known about epithelial-stromal interactions in vivo, it is necessary to visualize the stroma surrounding normal epithelium and mammary tumors in intact tissues to better understand how matrix organization, density, and composition affect tumor formation and progression.MethodsEpithelial-stromal interactions in normal mammary glands, mammary tumors, and tumor explants in three-dimensional culture were studied with histology, electron microscopy, and nonlinear optical imaging methodologies. Imaging of the tumor-stromal interface in live tumor tissue ex vivo was performed with multiphoton laser-scanning microscopy (MPLSM) to generate multiphoton excitation (MPE) of endogenous fluorophores and second harmonic generation (SHG) to image stromal collagen.ResultsWe used both laser-scanning multiphoton and second harmonic generation microscopy to determine the organization of specific collagen structures around ducts and tumors in intact, unfixed and unsectioned mammary glands. Local alterations in collagen density were clearly seen, allowing us to obtain three-dimensional information regarding the organization of the mammary stroma, such as radiating collagen fibers that could not have been obtained using classical histological techniques. Moreover, we observed and defined three tumor-associated collagen signatures (TACS) that provide novel markers to locate and characterize tumors. In particular, local cell invasion was found predominantly to be oriented along certain aligned collagen fibers, suggesting that radial alignment of collagen fibers relative to tumors facilitates invasion. Consistent with this observation, primary tumor explants cultured in a randomly organized collagen matrix realigned the collagen fibers, allowing individual tumor cells to migrate out along radially aligned fibers.ConclusionThe presentation of these tumor-associated collagen signatures allowed us to identify pre-palpable tumors and see cells at the tumor-stromal boundary invading into the stroma along radially aligned collagen fibers. As such, TACS should provide indications that a tumor is, or could become, invasive, and may serve as part of a strategy to help identify and characterize breast tumors in animal and human tissues.


BMC Medicine | 2008

Collagen density promotes mammary tumor initiation and progression

Paolo P. Provenzano; David R. Inman; Kevin W. Eliceiri; Justin G Knittel; Long Yan; Curtis T. Rueden; John G. White; Patricia J. Keely

BackgroundMammographically dense breast tissue is one of the greatest risk factors for developing breast carcinoma. Despite the strong clinical correlation, breast density has not been causally linked to tumorigenesis, largely because no animal model has existed for studying breast tissue density. Importantly, regions of high breast density are associated with increased stromal collagen. Thus, the influence of the extracellular matrix on breast carcinoma development and the underlying molecular mechanisms are not understood.MethodsTo study the effects of collagen density on mammary tumor formation and progression, we utilized a bi-transgenic tumor model with increased stromal collagen in mouse mammary tissue. Imaging of the tumors and tumor-stromal interface in live tumor tissue was performed with multiphoton laser-scanning microscopy to generate multiphoton excitation and spectrally resolved fluorescent lifetimes of endogenous fluorophores. Second harmonic generation was utilized to image stromal collagen.ResultsHerein we demonstrate that increased stromal collagen in mouse mammary tissue significantly increases tumor formation approximately three-fold (p < 0.00001) and results in a significantly more invasive phenotype with approximately three times more lung metastasis (p < 0.05). Furthermore, the increased invasive phenotype of tumor cells that arose within collagen-dense mammary tissues remains after tumor explants are cultured within reconstituted three-dimensional collagen gels. To better understand this behavior we imaged live tumors using nonlinear optical imaging approaches to demonstrate that local invasion is facilitated by stromal collagen re-organization and that this behavior is significantly increased in collagen-dense tissues. In addition, using multiphoton fluorescence and spectral lifetime imaging we identify a metabolic signature for flavin adenine dinucleotide, with increased fluorescent intensity and lifetime, in invading metastatic cells.ConclusionThis study provides the first data causally linking increased stromal collagen to mammary tumor formation and metastasis, and demonstrates that fundamental differences arise and persist in epithelial tumor cells that progressed within collagen-dense microenvironments. Furthermore, the imaging techniques and signature identified in this work may provide useful diagnostic tools to rapidly assess fresh tissue biopsies.


American Journal of Pathology | 2011

Aligned Collagen Is a Prognostic Signature for Survival in Human Breast Carcinoma

Matthew W. Conklin; Jens C. Eickhoff; Kristin M. Riching; Carolyn Pehlke; Kevin W. Eliceiri; Paolo P. Provenzano; Andreas Friedl; Patricia J. Keely

Evidence for the potent influence of stromal organization and function on invasion and metastasis of breast tumors is ever growing. We have performed a rigorous examination of the relationship of a tumor-associated collagen signature-3 (TACS-3) to the long-term survival rate of human patients. TACS-3 is characterized by bundles of straightened and aligned collagen fibers that are oriented perpendicular to the tumor boundary. An evaluation of TACS-3 was performed in biopsied tissue sections from 196 patients by second harmonic generation imaging of the backscattered signal generated by collagen. Univariate analysis of a Cox proportional hazard model demonstrated that the presence of TACS-3 was associated with poor disease-specific and disease-free survival, resulting in hazard ratios between 3.0 and 3.9. Furthermore, TACS-3 was confirmed to be an independent prognostic indicator regardless of tumor grade and size, estrogen or progesterone receptor status, human epidermal growth factor receptor-2 status, node status, and tumor subtype. Interestingly, TACS-3 was positively correlated to expression of stromal syndecan-1, a receptor for several extracellular matrix proteins including collagens. Because of the strong statistical evidence for poor survival in patients with TACS, and because the assessment can be performed in routine histopathological samples imaged via second harmonic generation or using picrosirius, we propose that quantifying collagen alignment is a viable, novel paradigm for the prediction of human breast cancer survival.


Oncogene | 2009

Matrix density-induced mechanoregulation of breast cell phenotype, signaling, and gene expression through a FAK-ERK linkage

Paolo P. Provenzano; David R. Inman; Kevin W. Eliceiri; Patricia J. Keely

Mammographically dense breast tissue is one of the greatest risk factors for developing breast carcinoma, yet the associated molecular mechanisms remain largely unknown. Importantly, regions of high breast density are associated with increased stromal collagen and epithelial cell content. We set out to determine whether increased collagen-matrix density, in the absence of stromal cells, was sufficient to promote proliferation and invasion characteristic of a malignant phenotype in non-transformed mammary epithelial cells. We demonstrate that increased collagen-matrix density increases matrix stiffness to promote an invasive phenotype. High matrix stiffness resulted in increased formation of activated three-dimensional (3D)-matrix adhesions and a chronically elevated outside-in/inside-out focal adhesion (FA) kinase (FAK)–Rho signaling loop, which was necessary to generate and maintain the invasive phenotype. Moreover, this signaling network resulted in hyperactivation of the Ras–mitogen-activated protein kinase (MAPK) pathway, which promoted growth of mammary epithelial cells in vitro and in vivo and activated a clinically relevant proliferation signature that predicts patient outcome. Hence, the current data provide compelling evidence for the importance of the mechanical features of the microenvironment, and suggest that mechanotransduction in these cells occurs through a FAK–Rho–ERK signaling network with extracellular signal-regulated kinase (ERK) as a bottleneck through which much of the response to mechanical stimuli is regulated. As such, we propose that increased matrix stiffness explains part of the mechanism behind increased epithelial proliferation and cancer risk in human patients with high breast tissue density.


Journal of Cell Biology | 2012

Matrix nanotopography as a regulator of cell function

Deok Ho Kim; Paolo P. Provenzano; Christopher Smith; Andre Levchenko

Proapoptotic Bcl-2 family members, such as Bax, promote release of cytochrome c from mitochondria, leading to caspase activation and cell death. It was previously reported that modulator of apoptosis protein 1 (MOAP-1), an enhancer of Bax activation induced by DNA damage, is stabilized by Trim39, a protein of unknown function. In this paper, we show that MOAP-1 is a novel substrate of the anaphase-promoting complex (APC/C(Cdh1)) ubiquitin ligase. The influence of Trim39 on MOAP-1 levels stems from the ability of Trim39 (a RING domain E3 ligase) to directly inhibit APC/C(Cdh1)-mediated protein ubiquitylation. Accordingly, small interfering ribonucleic acid-mediated knockdown of Cdh1 stabilized MOAP-1, thereby enhancing etoposide-induced Bax activation and apoptosis. These data identify Trim39 as a novel APC/C regulator and provide an unexpected link between the APC/C and apoptotic regulation via MOAP-1.The architecture of the extracellular matrix (ECM) directs cell behavior by providing spatial and mechanical cues to which cells respond. In addition to soluble chemical factors, physical interactions between the cell and ECM regulate primary cell processes, including differentiation, migration, and proliferation. Advances in microtechnology and, more recently, nanotechnology provide a powerful means to study the influence of the ECM on cell behavior. By recapitulating local architectures that cells encounter in vivo, we can elucidate and dissect the fundamental signal transduction pathways that control cell behavior in critical developmental, physiological, and pathological processes.


Biophysical Journal | 2008

Contact Guidance Mediated Three-Dimensional Cell Migration is Regulated by Rho/ROCK-Dependent Matrix Reorganization

Paolo P. Provenzano; David R. Inman; Kevin W. Eliceiri; Steven M. Trier; Patricia J. Keely

Cells generate mechanical force to organize the extracellular matrix (ECM) and drive important developmental and reparative processes. Likewise, tumor cells invading into three-dimensional (3D) matrices remodel the ECM microenvironment. Importantly, we previously reported a distinct radial reorganization of the collagen matrix surrounding tumors that facilitates local invasion. Here we describe a mechanism by which cells utilize contractility events to reorganize the ECM to provide contact guidance that facilitates 3D migration. Using novel assays to differentially organize the collagen matrix we show that alignment of collagen perpendicular to the tumor-explant boundary promotes local invasion of both human and mouse mammary epithelial cells. In contrast, organizing the collagen matrix to mimic the ECM organization associated with noninvading regions of tumors suppresses 3D migration/invasion. Moreover, we demonstrate that matrix reorganization is contractility-dependent and that the Rho/Rho kinase pathway is necessary for collagen alignment to provide contact guidance. Yet, if matrices are prealigned, inhibiting neither Rho nor Rho kinase inhibits 3D migration, which supports our conclusion that Rho-mediated matrix alignment is an early step in the invasion process, preceding and subsequently facilitating 3D migration.


Journal of Cell Science | 2011

Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling

Paolo P. Provenzano; Patricia J. Keely

The notion that cell shape and spreading can regulate cell proliferation has evolved over several years, but only recently has this been linked to forces from within and upon the cell. This emerging area of mechanical signaling is proving to be wide-spread and important for all cell types. The microenvironment that surrounds cells provides a complex spectrum of different, simultaneously active, biochemical, structural and mechanical stimuli. In this milieu, cells probe the stiffness of their microenvironment by pulling on the extracellular matrix (ECM) and/or adjacent cells. This process is dependent on transcellular cell–ECM or cell–cell adhesions, as well as cell contractility mediated by Rho GTPases, to provide a functional linkage through which forces are transmitted through the cytoskeleton by intracellular force-generating proteins. This Commentary covers recent advances in the underlying mechanisms that control cell proliferation by mechanical signaling, with an emphasis on the role of 3D microenvironments and in vivo extracellular matrices. Moreover, as there is much recent interest in the tumor–stromal interaction, we will pay particular attention to exciting new data describing the role of mechanical signaling in the progression of breast cancer.


Annals of Biomedical Engineering | 2001

Nonlinear Ligament Viscoelasticity

Paolo P. Provenzano; Roderic S. Lakes; Thomas Keenan; Ray Vanderby

AbstractLigaments display time-dependent behavior, characteristic of a viscoelastic solid, and are nonlinear in their stress–strain response. Recent experiments25 reveal that stress relaxation proceeds more rapidly than creep in medial collateral ligaments, a fact not explained by linear viscoelastic theory but shown by Lakes and Vanderby17 to be consistent with non-linear theory. This study tests the following hypothesis: non-linear viscoelasticity of ligament requires a description more general than the separable quasilinear viscoelasticity (QLV) formulation commonly used. The experimental test for this hypothesis involves performing both creep and relaxation studies at various loads and deformations below the damage threshold. Freshly harvested, rat medial collateral ligaments (MCLs) were used as a model. Results consistently show a nonlinear behavior in which the rate of creep is dependent upon stress level and the rate of relaxation is dependent upon strain level. Furthermore, relaxation proceeds faster than creep; consistent with the experimental observations of Thornton et al.25 The above results from rat MCLs are not consistent with a separable QLV theory. Inclusion of these nonlinearities would require a more general formulation.


Clinical & Experimental Metastasis | 2009

Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment

Paolo P. Provenzano; Kevin W. Eliceiri; Patricia J. Keely

Cancer metastasis involves complex cell behavior and interaction with the extracellular matrix by metabolically active cells. To observe invasion and metastasis with sub-cellular resolution in vivo, multiphoton microscopy (MPM) allows imaging more deeply into tissues with less toxicity, compared with other optical imaging methods. MPM can be combined with second harmonic generation (SHG), fluorescent lifetime imaging microscopy (FLIM), and spectral-lifetime imaging microscopy (SLIM). SHG facilitates imaging of stromal collagen and tumor–stroma interactions, including the architecture and remodeling of the tumor microenvironment. FLIM allows characterization of exogenous and endogenous fluorophores, such as the metabolites FAD and NADH to score for metabolic state and provide optical biomarkers. SLIM permits additional identification and separation of endogenous and exogenous fluorophores by simultaneously collecting their spectra and lifetime, producing an optical molecular “fingerprint”. Both FLIM and SLIM also serve as an improved method for the assessment of Förster (or fluorescence) resonance energy transfer (FRET). Hence, the use and further development of these approaches strongly enhances the visualization and quantification of tumor progression, invasion, and metastasis. Herein, we review recent developments of multiphoton FLIM and SLIM to study 2D and 3D cell migration, invasion into the tumor microenvironment, and metastasis.

Collaboration


Dive into the Paolo P. Provenzano's collaboration.

Top Co-Authors

Avatar

Ray Vanderby

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Patricia J. Keely

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kevin W. Eliceiri

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David R. Inman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Roderic S. Lakes

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Sunil R. Hingorani

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Matthew W. Conklin

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Arja Ray

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Christof Hurschler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Deok Ho Kim

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge