Paolo Rampini
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo Rampini.
security of information and networks | 2002
G. Foffani; A. Pesenti; Anna M. Bianchi; Valentina Chiesa; Giuseppe Baselli; E. Caputo; Filippo Tamma; Paolo Rampini; M. Egidi; Marco Locatelli; Sergio Barbieri; G. Scarlato
Abstract. Through electrodes implanted for deep brain stimulation in three patients (5 sides) with Parkinsons disease, we recorded the electrical activity from the human basal ganglia before, during and after voluntary contralateral finger movements, before and after L-DOPA. We analysed the movement-related spectral changes in the electroencephalographic signal from the subthalamic nucleus (STN) and from the internal globus pallidus (GPi). Before, during and after voluntary movements, signals arising from the human basal ganglia contained two main frequencies: a high β (around 26 Hz), and a low β (around 18 Hz). The high β (around 26 Hz) power decreased in the STN and GPi, whereas the low β (around 18 Hz) power decrease was consistently found only in the GPi. Both frequencies changed their power with a specific temporal modulation related to the different movement phases. L-DOPA specifically and selectively influenced the spectral power changes in these two signal bands.
Experimental Neurology | 2010
Gaia Giannicola; Sara Marceglia; Lorenzo Rossi; Simona Mrakic-Sposta; Paolo Rampini; Filippo Tamma; Filippo Cogiamanian; Sergio Barbieri; Alberto Priori
Local field potentials (LFPs) recorded through electrodes implanted in the subthalamic nucleus (STN) for deep brain stimulation (DBS) in patients with Parkinsons disease (PD) show that oscillations in the beta frequency range (8-20 Hz) decrease after levodopa intake. Whether and how DBS influences the beta oscillations and whether levodopa- and DBS-induced changes interact remains unclear. We examined the combined effect of levodopa and DBS on subthalamic beta LFP oscillations, recorded in nine patients with PD under four experimental conditions: without levodopa with DBS turned off; without levodopa with DBS turned on; with levodopa with DBS turned on; and with levodopa with DBS turned off. The analysis of STN-LFP oscillations showed that whereas levodopa abolished beta STN oscillations in all the patients (p=0.026), DBS significantly decreased the beta oscillation only in five of the nine patients studied (p=0.043). Another difference was that whereas levodopa completely suppressed beta oscillations, DBS merely decreased them. When we combined levodopa and DBS, the levodopa-induced beta disruption prevailed and combining levodopa and DBS induced no significant additive effect (p=0.500). Our observations suggest that levodopa and DBS both modulate LFP beta oscillations.
Brain Research Bulletin | 2008
Lorenzo Rossi; Sara Marceglia; Guglielmo Foffani; Filippo Cogiamanian; F. Tamma; Paolo Rampini; Sergio Barbieri; F. Bracchi
How deep brain stimulation (DBS) acts and how the brain responds to it remains unclear. To investigate the mechanisms involved, we analyzed changes in local field potentials from the subthalamic area (STN-LFPs) recorded through the deep brain macroelectrode during monopolar DBS of the subthalamic nucleus area (STN-DBS) in a group of eight patients (16 nuclei) with idiopathic Parkinsons disease. Monopolar STN-DBS was delivered through contact 1 and differential LFP recordings were acquired between contacts 0 and 2. The stimulating contact was 0.5 mm away from each recording contact. The power spectral analysis of STN-LFPs showed that during ongoing STN-DBS whereas the power of beta oscillations (8-20 Hz) and high beta oscillations (21-40 Hz) remained unchanged, the power of low-frequency oscillations (1-7 Hz) significantly increased (baseline=0.37+/-0.22; during DBS=7.07+/-15.10, p=0.0003). Despite comparable low-frequency baseline power with and without levodopa, the increase in low-frequency oscillations during STN-DBS was over boosted by pretreatment with levodopa. The low-frequency power increase in STN-LFPs during ongoing STN-DBS could reflect changes induced at basal ganglia network level similar to those elicited by levodopa. In addition, the correlation between the heart beat and the low-frequency oscillations suggests that part of the low-frequency power increase during STN-DBS arises from polarization phenomena around the stimulating electrode. Local polarization might in turn also help to normalize STN hyperactivity in Parkinsons disease.
Journal of Neurology, Neurosurgery, and Psychiatry | 2005
G. Foffani; Gianluca Ardolino; B Meda; M. Egidi; Paolo Rampini; Caputo E; G Baselli
The aim of this work was to study the role of subthalamo-pallidal synchronisation in the pathophysiology of dyskinesias. We recorded local field potentials (LFPs) in a patient with Parkinson’s disease and left surgery induced dyskinesias with double, bilateral deep brain stimulation electrode implants in the subthalamic nucleus (STN) and the globus pallidus internus (GPi). Synchronisation was studied through coherence analysis. In the nuclei contralateral to the dyskinetic side of the body there was decreased STN-GPi coherence in the high beta range (20–30 Hz) and an enhanced coherence at low frequencies (<10 Hz). Despite the possible limitations arising from single-case observations, our findings suggest that parkinsonian dyskinesias are related to altered synchronisation between different structures of the basal ganglia. Firing abnormalities within individual basal ganglia nuclei are probably not enough to account for the complex balance between hypokinetic and hyperkinetic symptoms in human parkinsonian dyskinesias and altered interactions between nuclei should also be considered.
Neurological Sciences | 2002
Filippo Tamma; E. Caputo; Valentina Chiesa; M. Egidi; Marco Locatelli; Paolo Rampini; C. Cinnante; A. Pesenti
Abstract. The efficacy of deep brain stimulation of the subthalamic nucleus (STN) is dependent on the accuracy of targeting. In order to reduce the number of passes and, consequently, the duration of surgery and risk of bleeding, we have set up a new method based on direct magnetic resonance imaging (MRI) localisation of the STN. This procedure allows a short duration of the neurophysiological session (one or two initial tracks). Whenever a supplementary track is needed, the stimulation-induced side effects are analysed to choose from one of the remaining holes in Bens gun. A good knowledge of anatomical structures surrounding the STN is mandatory to relate side effects to the actual position of the track. In our series of 11 patients (22 sides, 37 tracks), the most common and reproducible side effects were those characterised by motor, sensorial, oculomotor and vegetative signs and symptoms. Moreover, the therapeutic window (distance between the current intensity needed to obtain the best clinical effect and the intensity capable to induce side effects) predicted clinical efficacy in the long-term, and contributed to the choice of which among the examined tracks had to be implanted with the chronic macroelectrode.
Movement Disorders | 2015
Manuela Rosa; Mattia Arlotti; Gianluca Ardolino; Filippo Cogiamanian; Sara Marceglia; Alessio Di Fonzo; Francesca Cortese; Paolo Rampini; Alberto Priori
The future of deep brain stimulation (DBS) for Parkinsons disease (PD) lies in new closed‐loop systems that continuously supply the implanted stimulator with new settings obtained by analyzing a feedback signal related to the patients current clinical condition.1 The most suitable feedback for PD is subthalamic local field potential (LFP) activity recorded from the stimulating electrode itself.2, 3, 4 This closed‐loop technology known as adaptive DBS (aDBS) recently proved superior to conventional open‐loop DBS (cDBS) in patients with PD.2
Proceedings of the National Academy of Sciences of the United States of America | 2015
M. Cecilia Caino; Jagadish C. Ghosh; Young Chan Chae; Valentina Vaira; Dayana B. Rivadeneira; Alice Faversani; Paolo Rampini; Andrew V. Kossenkov; Katherine M. Aird; Rugang Zhang; Marie R. Webster; Ashani T. Weeraratna; Silvano Bosari; Lucia R. Languino; Dario C. Altieri
Significance Despite the promise of personalized cancer medicine, most molecular therapies produce only modest and short-lived patient gains. In addition to drug resistance, it is also possible that tumors adaptively reprogram their signaling pathways to evade therapy-induced “stress” and, in the process, acquire more aggressive disease traits. We show here that small-molecule inhibitors of PI3K, a cancer node and important therapeutic target, induce transcriptional and signaling reprogramming in tumors. This involves the trafficking of energetically active mitochondria to subcellular sites of cell motility, where they provide a potent, “regional” energy source to support tumor cell invasion. Although this response may paradoxically increase the risk of metastasis during PI3K therapy, targeting mitochondrial reprogramming is feasible, and could provide a novel therapeutic strategy. Molecular therapies are hallmarks of “personalized” medicine, but how tumors adapt to these agents is not well-understood. Here we show that small-molecule inhibitors of phosphatidylinositol 3-kinase (PI3K) currently in the clinic induce global transcriptional reprogramming in tumors, with activation of growth factor receptors, (re)phosphorylation of Akt and mammalian target of rapamycin (mTOR), and increased tumor cell motility and invasion. This response involves redistribution of energetically active mitochondria to the cortical cytoskeleton, where they support membrane dynamics, turnover of focal adhesion complexes, and random cell motility. Blocking oxidative phosphorylation prevents adaptive mitochondrial trafficking, impairs membrane dynamics, and suppresses tumor cell invasion. Therefore, “spatiotemporal” mitochondrial respiration adaptively induced by PI3K therapy fuels tumor cell invasion, and may provide an important antimetastatic target.
Movement Disorders | 2007
Ettore Accolla; E. Caputo; Filippo Cogiamanian; Filippo Tamma; Simona Mrakic-Sposta; Sara Marceglia; M. Egidi; Paolo Rampini; Marco Locatelli; Alberto Priori
We investigated gender‐differences in clinical phenomenology and response to deep brain stimulation (DBS) of the subthalamic nucleus (STN) in a group of patients with advanced Parkinsons disease (PD). Thirty‐eight consecutive patients with PD (22 men and 16 women), bilaterally implanted for DBS of the STN, were evaluated 1 month before and 11 to 14 months after surgery. Gender differences in severity of the disease (HY and UPDRS), ability in the activities of daily living (ADL, UPDRS II), tremor and rigidity (UPDRS III), bradykinesia (UPDRS III and hand tapping test), levodopa‐induced dyskinesias (LIDs, UPDRS IV), and levodopa equivalent daily dosage (LEDD) were analyzed before and after intervention. We found a predominantly male population, with no gender‐related differences in age at onset, disease progression rate, or severity of disease. Nevertheless, women had more severe LIDs than men, only before the intervention. Bradykinesia was significantly less responsive to any kind of treatment (pharmacologic and neurosurgical) in women than in men. Finally, although STN‐DBS induced similar total benefits in both genders, postoperative assessment suggested that the ADL improved more in women than in men. Women and men with advanced PD appear to differ in some clinical features and in response to dopaminergic and STN‐DBS treatment.
Neurological Sciences | 2002
M. Egidi; Paolo Rampini; Marco Locatelli; M. Farabola; A. Pesenti; Filippo Tamma; E. Caputo; Valentina Chiesa; R.M. Villani
Abstract. A novel multiple, sequential image fusion (MuSIF) procedure merging stereotaxic CT with frameless magnetic resonance imaging (MRI) is used since June 2000 to visualise and directly localise the subthalamic nucleus (STN) on T2 images. In 13 consecutive Parkinsons cases, intraoperative recording and stimulation verified bilateral electrode implantation guided by fused T2 images. In 85% of sides, final implantation opted for visualised target track. Implanted electrode position on postoperative T2 images matched planned target. Clinical follow-up reproduces literatures best results. This MuSIF technique, effective for direct STN targeting, has practical advantages: MRI can be performed regardless of surgery time; regular MR scanning to correct real image distortion is unneeded; and the need for multiple localising tracks is reduced by enabling us to account for each patients STN anatomy.
Critical Care Medicine | 2015
Tommaso Zoerle; Alessandra Lombardo; Angelo Colombo; Luca Longhi; Elisa R. Zanier; Paolo Rampini; Nino Stocchetti
Objectives:To describe mean intracranial pressure after aneurysmal subarachnoid hemorrhage, to identify clinical factors associated with increased mean intracranial pressure, and to explore the relationship between mean intracranial pressure and outcome. Design:Analysis of a prospectively collected observational database. Setting:Neuroscience ICU of an academic hospital. Patients:One hundred sixteen patients with subarachnoid hemorrhage and intracranial pressure monitoring. Interventions:None. Measurements and Main Results:Episodes of intracranial pressure greater than 20 mm Hg lasting at least 5 minutes and the mean intracranial pressure for every 12-hour interval were analyzed. The highest mean intracranial pressure was analyzed in relation to demographic characteristics, acute neurologic status, initial radiological findings, aneurysm treatment, clinical vasospasm, and ischemic lesion. Mortality and 6-month outcome (evaluated using a dichotomized Glasgow Outcome Scale) were also introduced in multivariable logistic models. Eighty-one percent of patients had at least one episode of high intracranial pressure and 36% had a highest mean intracranial pressure more than 20 mm Hg. The number of patients with high intracranial pressure peaked 3 days after subarachnoid hemorrhage and declined after day 7. Highest mean intracranial pressure greater than 20 mm Hg was significantly associated with initial neurologic status, aneurysmal rebleeding, amount of blood on CT scan, and ischemic lesion within 72 hours from subarachnoid hemorrhage. Patients with highest mean intracranial pressure greater than 20 mm Hg had significantly higher mortality. When death, vegetative state, and severe disability at 6 months were pooled, however, intracranial pressure was not an independent predictor of unfavorable outcome. Conclusions:High intracranial pressure is a common complication in the first week after subarachnoid hemorrhage in severe cases admitted to ICU. Mean intracranial pressure is associated with the severity of early brain injury and with mortality.
Collaboration
Dive into the Paolo Rampini's collaboration.
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputsFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputsFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputsFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputsFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputsFondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
View shared research outputs