Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Roccaro is active.

Publication


Featured researches published by Paolo Roccaro.


Environmental Science & Technology | 2014

N-nitrosodimethylamine formation upon ozonation and identification of precursors source in a municipal wastewater treatment plant.

Massimiliano Sgroi; Paolo Roccaro; Gregg L. Oelker; Shane A. Snyder

Ozone doses normalized to the dissolved organic carbon concentration were applied to the primary influent, primary effluent, and secondary effluent of a wastewater treatment plant producing water destined for potable reuse. Results showed the most N-Nitrosodimethylamine (NDMA) production from primary effluent, and the recycle streams entering the primary clarifiers were identified as the main source of NDMA precursors. The degradation of aminomethylated polyacrylamide (Mannich) polymer used for sludge treatment was a significant cause of precursor occurrence. A strong correlation between NDMA formation and ammonia concentration was found suggesting an important role of ammonia oxidation on NDMA production. During ozonation tests in DI water using dimethylamine (DMA) as model precursor, the NDMA yield significantly increased in the presence of ammonia and bromide due to the formation of hydroxylamine and brominated nitrogenous oxidants. In addition, NDMA formation during ozonation of dimethylformamide (DMF), the other model precursor used in this study, occurred only in the presence of ammonia, and it was attributable to the oxidation of DMF by hydroxyl radicals. Filtered wastewater samples (0.7 μm) produced more NDMA than unfiltered samples, suggesting that ozone reacted with dissolved precursors and supporting the hypothesis of polymer degradation. Particularly, the total suspended solids content similarly affected NDMA formation and the UV absorbance decrease during ozonation due to the different ozone demand created in filtered and unfiltered samples.


Journal of Hazardous Materials | 2017

Use of fluorescence EEM to monitor the removal of emerging contaminants in full scale wastewater treatment plants

Massimiliano Sgroi; Paolo Roccaro; Gregory V. Korshin; Valentina Greco; Sebastiano Sciuto; Tarun Anumol; Shane A. Snyder; Federico G.A. Vagliasindi

This study investigated the applicability of different techniques for fluorescence excitation/emission matrices data interpretations, including peak-picking method, fluorescence regional integration and PARAFAC modelling, to act as surrogates in predicting emerging trace organic compounds (ETOrCs) removal during conventional wastewater treatments that usually comprise primary and secondary treatments. Results showed that fluorescence indexes developed using alternative methodologies but indicative of a same dissolved organic matter component resulted in similar predictions of the removal of the target compounds. The peak index defined by the excitation/emission wavelength positions (λex/λem) 225/290nm and related to aromatic proteins and tyrosine-like fluorescence was determined to be a particularly suitable surrogate for monitoring ETOrCs that had very high removal rates (average removal >70%) (i.e., triclosan, caffeine and ibuprofen). The peak index defined by λex/λem=245/440nm and the PARAFAC component with wavelength of the maxima λex/λem=245, 350/450, both identified as humic-like fluorescence, were found remarkably well correlated with ETOrCs such as atenolol, naproxen and gemfibrozil that were moderately removed (51-70% average removal). Finally, the PARAFAC component with wavelength of the maxima λex/λem=<240, 315/380 identified as microbial humic-like fluorescence was the only index correlated with the removal of the antibiotic trimethoprim (average removal 68%).


Water Research | 2015

N-nitrosodimethylamine (NDMA) formation at an indirect potable reuse facility.

Massimiliano Sgroi; Paolo Roccaro; Gregg L. Oelker; Shane A. Snyder

Full-scale experiments to evaluate N-nitrosodimethylamine (NDMA) formation and attenuation were performed within an advanced indirect potable reuse (IPR) treatment system, which includes, sequentially: chloramination for membrane fouling control, microfiltration (MF), reverse osmosis (RO), ultraviolet irradiation with hydrogen peroxide (UV/H₂O₂), final chloramination, and pH stabilization. Results of the study demonstrate that while RO does effectively remove the vast majority of NDMA precursors, RO permeate can still contain significant concentrations of NDMA precursors resulting in additional NDMA formation during chloramination. Thus, it is possible for this advanced treatment system to produce water with NDMA levels higher than regional requirements for potable applications (10 ng/L). The presence of H2O2 during UV oxidation reduced NDMA photolysis efficiency and increased NDMA formation (∼22 ng/L) during the secondary chloramination and lime stabilization. This is likely due to formation of UV/H₂O₂ degradation by-products with higher NDMA formation rate than the parent compounds. However, this effect was diminished with higher UV doses. Bench-scale experiments confirmed an enhanced NDMA formation during chloramination after UV/H2O2 treatment of dimethylformamide, a compound detected in RO permeate and used as model precursor in this study. The effect of pre-ozonation for membrane fouling control on NDMA formation was also evaluated at pilot- (ozone-MF-RO) and bench-scale. Relatively large NDMA formation (117-227 ng/L) occurred through ozone application that was dose dependent, whereas chloramination under typical dosages and contact times of IPR systems resulted in only a relatively small increase of NDMA (∼20 ng/L). Thus, this research shows that NDMA formation within a potable water reuse facility can be challenging and must be carefully evaluated and controlled.


Water Research | 2014

Effects of pH on the speciation coefficients in models of bromide influence on the formation of trihalomethanes and haloacetic acids

Paolo Roccaro; Gregory V. Korshin; David Cook; Christopher W.K. Chow; Mary Drikas

This study investigated effects of pH, bromide and natural organic matter (NOM) level on yields and speciation of trihalomethanes (THMs) and haloacetic acids (HAAs) in chlorinated water. Experimental data were obtained using two water sources, one with a medium (DOC = 1.4 mg/L and SUVA = 2.60 L mg(-1) m(-1)) and the other with higher (DOC = 7.7 mg/L and SUVA = 4.26 L mg(-1) m(-1)) organic carbon level. The experiments employed the simulated distribution system (SDS) procedure at varying bromide concentrations and pH values of 7.0, 8.5 and 10. The speciation of THMs and dihalogenated HAAs (DHAAs) was interpreted based on the modelling of mixed halogenation yields via dimensionless ratios of bromination/chlorination reaction rates at each halogen incorporation node. The approach allowed precise modelling of the speciation of THMs and DHAAs at all examined pHs. In the case of DHAA, the dimensionless ratios of the bromination/chlorination reaction rates were not consistently affected by pH variations. For THMs, increase of pH caused the values of the dimensionless bromination/chlorination reaction rates to decrease in the case of halogenation of the initial reaction sites indicating a decreasing preference toward bromination at this reaction node. A similar trend was observed for the reactivity of dichlorinated reaction intermediate denoted as SCl2 whose formation precedes the release of CHCl3 and CHBrCl2. A similar but less consistent trend was observed for intermediate SBrCl whose halogenation yields both CHBrCl2 and CHBr2Cl. An opposite trend of increasing preference towards bromination at higher pHs was observed monobrominated intermediate SBr and in some extent dibrominated intermediate SBr2. These results help develop detailed DBP speciation models which needed to better understand the generation and potential health effects of THMs and HAAs at varying operating conditions and ultimately to adopt measure to minimize their levels in drinking water systems.


Water Research | 2013

Modeling bromide effects on yields and speciation of dihaloacetonitriles formed in chlorinated drinking water

Paolo Roccaro; Hyun-Shik Chang; Federico G.A. Vagliasindi; Gregory V. Korshin

This study examined effects of bromide on yields and speciation of dihaloacetonitrile (DHAN) species that included dichloro-, bromochloro- and dibromoacetonitriles generated in chlorinated water. Experimental data obtained using two water sources, varying concentrations and characters of Natural Organic Matter (NOM), bromide concentrations, reaction times, chlorine doses, temperatures and pHs were interpreted using a semi-phenomenological model that assumed the presence of three kinetically distinct sites in NOM (denoted as sites S1, S2 and S3) and the occurrence of sequential incorporation of bromine and chlorine into them. One site was found to react very fast with the chlorine and bromine but its contribution in the DHAN generation was very low. The site with the highest contribution to the yield of DHAN (>70%) has the lowest reaction rates. The model introduced dimensionless coefficients (denoted as φ1(DHAN), φ2(DHAN) and φ3(DHAN)) applicable to the initial DHAN generation sites and their monochlorinated and monobrominated products, respectively. These parameters were used to quantify the kinetic preference to bromine incorporation over that of chlorine. Values of these coefficients optimized for DHAN formation were indicative of the strongly preferential incorporation of bromine into the engaged NOM sites. The same set of φ(i)(DHAN) coefficients could be used to model the speciation of DHAN released from their kinetically different precursors. The dimensionless speciation coefficients φ(i)(DHAN) were determined to be site specific and dependent on the NOM content and character as well as pH. The presented model of DHAN formation and speciation can help quantify in more detail the generation of DHAN and provide more insight necessary for further assessment of their potential health effects.


Water Science and Technology | 2011

Quantifying the formation of nitrogen-containing disinfection by-products in chlorinated water using absorbance and fluorescence indexes

Paolo Roccaro; Federico G.A. Vagliasindi; Gregory V. Korshin

Among known but unregulated disinfection by-products (DBPs), several nitrogenous species (N-DBPs) have been found in drinking waters. While concentrations of N-DBP are much lower than those of trihalomethanes (THMs) and haloacetic acids (HAAs), their potential toxicity is higher. In this study the relationships between the formation of N-DBPs and the changes in NOM caused by the chlorination of raw Ancipa water quantified by the use of differential absorbance and fluorescence indexes were investigated. Very strong relationships were found between selected N-DBPs (i.e. trichloronitromethane and dichloroacetonitrile) and the proposed spectroscopic indexes that were previously developed to quantify the changes in natural organic matter (NOM) during chlorination at varying reaction conditions (chlorine dose, reaction time and temperature) and the generation of DBPs. Obtained results clearly indicate that the changes in NOM absorbance and fluorescence are fundamental descriptors of the formation of both commonly controlled halogenated DBPs and N-DBPs. This approach may be suitable for real time monitoring of emerging N-DBPs and for studying their formation pathways.


Science of The Total Environment | 2017

Enhancement of total nitrogen removal through effluent recirculation and fate of PPCPs in a hybrid constructed wetland system treating urban wastewater

Cristina Ávila; Catiane Pelissari; Pablo Heleno Sezerino; Massimiliano Sgroi; Paolo Roccaro; Joan García

The effect of effluent recirculation on the removal of total nitrogen (TN) and eight pharmaceuticals and personal care products (PPCPs) was evaluated during 9months in an experimental hybrid constructed wetland (CW) system applied in the treatment of urban wastewater. An Imhoff tank was followed by three stages of CWs (two 1.5-m2 vertical subsurface flow (VF) beds alternating feed-rest cycles, a 2-m2 horizontal (HF) and a 2-m2 free water surface (FWS) wetland in series). A fraction of the final effluent was recycled back to the Imhoff tank with a recirculation rate of 50% (hydraulic loading rate=0.37md-1). The systems performance varied throughout the study. In Period I (summer) consistently high load removal efficiencies of TN (89±5%) and a removal rate of 6.6±1.4gTNm-2d-1 were exhibited. In Period II (fall), the poor performance of the FWS during the senescence of macrophytes caused a large increase in organic matter, solids and nutrient concentrations, drastically deteriorating water quality. The determination of PPCPs was conducted during this period. Recalcitrant compounds, namely sulfamethoxazole, carbamazapine, TCEP and sucralose were negligibly removed in all CWs. However, noteworthy was the ≈30% removal of sucralose in the VF wetland. Caffeine (80%) and fluoxetine (27%) showed similar elimination rates in both VF and HF units, whereas trimethoprim and DEET were significantly better removed in the VF than in the HF. The concentration of the four latter compounds showed a severe increase in the FWS, indicating possible desorption from the sediment/biomass during adverse conditions. Harvesting of the aboveground biomass in this unit returned the systems performance back to normality (Period III), achieving 77±7% TN removal despite the winter season, proving effluent recirculation as an effective strategy for TN removal in hybrid CW systems when stringent restrictions are in place.


Chemosphere | 2016

N-nitrosodimethylamine (NDMA) formation during ozonation of wastewater and water treatment polymers.

Massimiliano Sgroi; Paolo Roccaro; Gregg L. Oelker; Shane A. Snyder

N-Nitrosodimethylamine (NDMA) formation by ozonation was investigated in the effluents of four different wastewater treatment plants destined for alternative reuse. Very high levels of NDMA formation were observed in wastewaters from treatment plants non operating with biological nitrogen removal. Selected experiments showed that hydroxyl radical did not have a significant role in NDMA formation during ozonation of wastewater. Furthermore, ozonation of three different polymers used for water treatment, including polyDADMAC, anionic polyacrylamide, and cationic polyacrylamide, spiked in wastewater did not increase the NDMA formation. Effluent organic matter (EfOM) likely reduced the availability of ozone in water able to react with polymers and quenched the produced ·OH radicals which limited polymer degradation and subsequent NDMA production. Excellent correlations were observed between NDMA formation, UV absorbance at 254 nm, and total fluorescence reduction. These data provide evidence that UV and fluorescence surrogates could be used for monitoring and/or controlling NDMA formation during ozonation.


Environmental Science & Technology | 2017

Monitoring the Behavior of Emerging Contaminants in Wastewater-Impacted Rivers Based on the Use of Fluorescence Excitation Emission Matrixes (EEM)

Massimiliano Sgroi; Paolo Roccaro; Gregory V. Korshin; Federico G.A. Vagliasindi

This study investigated the applicability of fluorescence indexes based on the interpretation of excitation emission matrices (EEMs) by PARAFAC analysis and by selecting fluorescence intensities at a priori defined excitation/emission pairs as surrogates for monitoring the behavior of emerging organic compounds (EOCs) in two catchment basins impacted by wastewater discharges. Relevant EOC and EEM data were obtained for a 90 km stretch of the Simeto River, the main river in Sicily, and the smaller San Leonardo River, which was investigated for a 17 km stretch. The use of fluorescence indexes developed by these two different approaches resulted in similar observations. Changes of the fluorescence indexes that correspond to a group of humic-like fluorescing species were determined to be highly correlated with the concentrations of recalcitrant contaminants such as sucralose, sulfamethoxazole and carbamazepine, which are typical wastewater markers in river water. Changes of the fluorescence indexes related to tyrosine-like substances were well correlated with the concentrations of ibuprofen and caffeine, anthropogenic indicators of untreated wastewater discharges. Chemical oxygen demand and dissolved organic carbon concentrations were correlated with humic-like fluorescence indexes. The observed correlations were site-specific and characterized by different regression parameters for every collection event. Caffeine and carbamazepine showed correlations with florescence indexes in the San Leonardo River and in the alluvial plain stretch of the Simeto River, whereas sucralose, sulfamethoxazole and ibuprofen have always been well correlated in all the investigated river stretches. However, when data of different collection events from river stretches where correlations were observed were combined, good linear correlations were obtained for data sets generated via the normalization of the measured concentrations by the average value for the corresponding collection event. These results show that fluorescence based indexes can be used to monitor the behavior of some trace organic contaminants in wastewater impacted rivers and to track wastewater discharges in streams and rivers.


Chemosphere | 2018

N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal

Massimiliano Sgroi; Federico G.A. Vagliasindi; Shane A. Snyder; Paolo Roccaro

This review summarizes major findings over the last decade related to N-Nitrosodimethylamine (NDMA) in water and wastewater. In particular, the review is focused on the removal of NDMA and of its precursors by conventional and advanced water and wastewater treatment processes. New information regarding formation mechanisms and precursors are discussed as well. NDMA precursors are generally of anthropogenic origin and their main source in water have been recognized to be wastewater discharges. Chloramination is the most common process that results in formation of NDMA during water and wastewater treatment. However, ozonation of wastewater or highly contaminated surface water can also generate significant levels of NDMA. Thus, NDMA formation control and remediation has become of increasing interest, particularly during treatment of wastewater-impacted water and during potable reuse application. NDMA formation has also been associated with the use of quaternary amine-based coagulants and anion exchange resins. UV photolysis with UV fluence far higher than typical disinfection doses is generally considered the most efficient technology for NDMA mitigation. However, recent studies on the optimization of biological processes offer a potentially lower-energy solution. Options for NDMA control include attenuation of precursor materials through physical removal, biological treatment, and/or deactivation by application of oxidants. Nevertheless, NDMA precursor identification and removal can be challenging and additional research and optimization is needed. As municipal wastewater becomes increasingly used as a source water for drinking, NDMA formation and mitigation strategies will become increasingly more important. The following review provides a summary of the most recent information available.

Collaboration


Dive into the Paolo Roccaro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joan García

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

C. Barone

University of Catania

View shared research outputs
Researchain Logo
Decentralizing Knowledge