Massimiliano Sgroi
University of Catania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Massimiliano Sgroi.
Environmental Science & Technology | 2014
Massimiliano Sgroi; Paolo Roccaro; Gregg L. Oelker; Shane A. Snyder
Ozone doses normalized to the dissolved organic carbon concentration were applied to the primary influent, primary effluent, and secondary effluent of a wastewater treatment plant producing water destined for potable reuse. Results showed the most N-Nitrosodimethylamine (NDMA) production from primary effluent, and the recycle streams entering the primary clarifiers were identified as the main source of NDMA precursors. The degradation of aminomethylated polyacrylamide (Mannich) polymer used for sludge treatment was a significant cause of precursor occurrence. A strong correlation between NDMA formation and ammonia concentration was found suggesting an important role of ammonia oxidation on NDMA production. During ozonation tests in DI water using dimethylamine (DMA) as model precursor, the NDMA yield significantly increased in the presence of ammonia and bromide due to the formation of hydroxylamine and brominated nitrogenous oxidants. In addition, NDMA formation during ozonation of dimethylformamide (DMF), the other model precursor used in this study, occurred only in the presence of ammonia, and it was attributable to the oxidation of DMF by hydroxyl radicals. Filtered wastewater samples (0.7 μm) produced more NDMA than unfiltered samples, suggesting that ozone reacted with dissolved precursors and supporting the hypothesis of polymer degradation. Particularly, the total suspended solids content similarly affected NDMA formation and the UV absorbance decrease during ozonation due to the different ozone demand created in filtered and unfiltered samples.
Journal of Hazardous Materials | 2017
Massimiliano Sgroi; Paolo Roccaro; Gregory V. Korshin; Valentina Greco; Sebastiano Sciuto; Tarun Anumol; Shane A. Snyder; Federico G.A. Vagliasindi
This study investigated the applicability of different techniques for fluorescence excitation/emission matrices data interpretations, including peak-picking method, fluorescence regional integration and PARAFAC modelling, to act as surrogates in predicting emerging trace organic compounds (ETOrCs) removal during conventional wastewater treatments that usually comprise primary and secondary treatments. Results showed that fluorescence indexes developed using alternative methodologies but indicative of a same dissolved organic matter component resulted in similar predictions of the removal of the target compounds. The peak index defined by the excitation/emission wavelength positions (λex/λem) 225/290nm and related to aromatic proteins and tyrosine-like fluorescence was determined to be a particularly suitable surrogate for monitoring ETOrCs that had very high removal rates (average removal >70%) (i.e., triclosan, caffeine and ibuprofen). The peak index defined by λex/λem=245/440nm and the PARAFAC component with wavelength of the maxima λex/λem=245, 350/450, both identified as humic-like fluorescence, were found remarkably well correlated with ETOrCs such as atenolol, naproxen and gemfibrozil that were moderately removed (51-70% average removal). Finally, the PARAFAC component with wavelength of the maxima λex/λem=<240, 315/380 identified as microbial humic-like fluorescence was the only index correlated with the removal of the antibiotic trimethoprim (average removal 68%).
Water Research | 2015
Massimiliano Sgroi; Paolo Roccaro; Gregg L. Oelker; Shane A. Snyder
Full-scale experiments to evaluate N-nitrosodimethylamine (NDMA) formation and attenuation were performed within an advanced indirect potable reuse (IPR) treatment system, which includes, sequentially: chloramination for membrane fouling control, microfiltration (MF), reverse osmosis (RO), ultraviolet irradiation with hydrogen peroxide (UV/H₂O₂), final chloramination, and pH stabilization. Results of the study demonstrate that while RO does effectively remove the vast majority of NDMA precursors, RO permeate can still contain significant concentrations of NDMA precursors resulting in additional NDMA formation during chloramination. Thus, it is possible for this advanced treatment system to produce water with NDMA levels higher than regional requirements for potable applications (10 ng/L). The presence of H2O2 during UV oxidation reduced NDMA photolysis efficiency and increased NDMA formation (∼22 ng/L) during the secondary chloramination and lime stabilization. This is likely due to formation of UV/H₂O₂ degradation by-products with higher NDMA formation rate than the parent compounds. However, this effect was diminished with higher UV doses. Bench-scale experiments confirmed an enhanced NDMA formation during chloramination after UV/H2O2 treatment of dimethylformamide, a compound detected in RO permeate and used as model precursor in this study. The effect of pre-ozonation for membrane fouling control on NDMA formation was also evaluated at pilot- (ozone-MF-RO) and bench-scale. Relatively large NDMA formation (117-227 ng/L) occurred through ozone application that was dose dependent, whereas chloramination under typical dosages and contact times of IPR systems resulted in only a relatively small increase of NDMA (∼20 ng/L). Thus, this research shows that NDMA formation within a potable water reuse facility can be challenging and must be carefully evaluated and controlled.
Science of The Total Environment | 2017
Cristina Ávila; Catiane Pelissari; Pablo Heleno Sezerino; Massimiliano Sgroi; Paolo Roccaro; Joan García
The effect of effluent recirculation on the removal of total nitrogen (TN) and eight pharmaceuticals and personal care products (PPCPs) was evaluated during 9months in an experimental hybrid constructed wetland (CW) system applied in the treatment of urban wastewater. An Imhoff tank was followed by three stages of CWs (two 1.5-m2 vertical subsurface flow (VF) beds alternating feed-rest cycles, a 2-m2 horizontal (HF) and a 2-m2 free water surface (FWS) wetland in series). A fraction of the final effluent was recycled back to the Imhoff tank with a recirculation rate of 50% (hydraulic loading rate=0.37md-1). The systems performance varied throughout the study. In Period I (summer) consistently high load removal efficiencies of TN (89±5%) and a removal rate of 6.6±1.4gTNm-2d-1 were exhibited. In Period II (fall), the poor performance of the FWS during the senescence of macrophytes caused a large increase in organic matter, solids and nutrient concentrations, drastically deteriorating water quality. The determination of PPCPs was conducted during this period. Recalcitrant compounds, namely sulfamethoxazole, carbamazapine, TCEP and sucralose were negligibly removed in all CWs. However, noteworthy was the ≈30% removal of sucralose in the VF wetland. Caffeine (80%) and fluoxetine (27%) showed similar elimination rates in both VF and HF units, whereas trimethoprim and DEET were significantly better removed in the VF than in the HF. The concentration of the four latter compounds showed a severe increase in the FWS, indicating possible desorption from the sediment/biomass during adverse conditions. Harvesting of the aboveground biomass in this unit returned the systems performance back to normality (Period III), achieving 77±7% TN removal despite the winter season, proving effluent recirculation as an effective strategy for TN removal in hybrid CW systems when stringent restrictions are in place.
Chemosphere | 2016
Massimiliano Sgroi; Paolo Roccaro; Gregg L. Oelker; Shane A. Snyder
N-Nitrosodimethylamine (NDMA) formation by ozonation was investigated in the effluents of four different wastewater treatment plants destined for alternative reuse. Very high levels of NDMA formation were observed in wastewaters from treatment plants non operating with biological nitrogen removal. Selected experiments showed that hydroxyl radical did not have a significant role in NDMA formation during ozonation of wastewater. Furthermore, ozonation of three different polymers used for water treatment, including polyDADMAC, anionic polyacrylamide, and cationic polyacrylamide, spiked in wastewater did not increase the NDMA formation. Effluent organic matter (EfOM) likely reduced the availability of ozone in water able to react with polymers and quenched the produced ·OH radicals which limited polymer degradation and subsequent NDMA production. Excellent correlations were observed between NDMA formation, UV absorbance at 254 nm, and total fluorescence reduction. These data provide evidence that UV and fluorescence surrogates could be used for monitoring and/or controlling NDMA formation during ozonation.
Environmental Science & Technology | 2017
Massimiliano Sgroi; Paolo Roccaro; Gregory V. Korshin; Federico G.A. Vagliasindi
This study investigated the applicability of fluorescence indexes based on the interpretation of excitation emission matrices (EEMs) by PARAFAC analysis and by selecting fluorescence intensities at a priori defined excitation/emission pairs as surrogates for monitoring the behavior of emerging organic compounds (EOCs) in two catchment basins impacted by wastewater discharges. Relevant EOC and EEM data were obtained for a 90 km stretch of the Simeto River, the main river in Sicily, and the smaller San Leonardo River, which was investigated for a 17 km stretch. The use of fluorescence indexes developed by these two different approaches resulted in similar observations. Changes of the fluorescence indexes that correspond to a group of humic-like fluorescing species were determined to be highly correlated with the concentrations of recalcitrant contaminants such as sucralose, sulfamethoxazole and carbamazepine, which are typical wastewater markers in river water. Changes of the fluorescence indexes related to tyrosine-like substances were well correlated with the concentrations of ibuprofen and caffeine, anthropogenic indicators of untreated wastewater discharges. Chemical oxygen demand and dissolved organic carbon concentrations were correlated with humic-like fluorescence indexes. The observed correlations were site-specific and characterized by different regression parameters for every collection event. Caffeine and carbamazepine showed correlations with florescence indexes in the San Leonardo River and in the alluvial plain stretch of the Simeto River, whereas sucralose, sulfamethoxazole and ibuprofen have always been well correlated in all the investigated river stretches. However, when data of different collection events from river stretches where correlations were observed were combined, good linear correlations were obtained for data sets generated via the normalization of the measured concentrations by the average value for the corresponding collection event. These results show that fluorescence based indexes can be used to monitor the behavior of some trace organic contaminants in wastewater impacted rivers and to track wastewater discharges in streams and rivers.
Chemosphere | 2018
Massimiliano Sgroi; Federico G.A. Vagliasindi; Shane A. Snyder; Paolo Roccaro
This review summarizes major findings over the last decade related to N-Nitrosodimethylamine (NDMA) in water and wastewater. In particular, the review is focused on the removal of NDMA and of its precursors by conventional and advanced water and wastewater treatment processes. New information regarding formation mechanisms and precursors are discussed as well. NDMA precursors are generally of anthropogenic origin and their main source in water have been recognized to be wastewater discharges. Chloramination is the most common process that results in formation of NDMA during water and wastewater treatment. However, ozonation of wastewater or highly contaminated surface water can also generate significant levels of NDMA. Thus, NDMA formation control and remediation has become of increasing interest, particularly during treatment of wastewater-impacted water and during potable reuse application. NDMA formation has also been associated with the use of quaternary amine-based coagulants and anion exchange resins. UV photolysis with UV fluence far higher than typical disinfection doses is generally considered the most efficient technology for NDMA mitigation. However, recent studies on the optimization of biological processes offer a potentially lower-energy solution. Options for NDMA control include attenuation of precursor materials through physical removal, biological treatment, and/or deactivation by application of oxidants. Nevertheless, NDMA precursor identification and removal can be challenging and additional research and optimization is needed. As municipal wastewater becomes increasingly used as a source water for drinking, NDMA formation and mitigation strategies will become increasingly more important. The following review provides a summary of the most recent information available.
Water Research | 2018
Massimiliano Sgroi; Tarun Anumol; Paolo Roccaro; Federico G.A. Vagliasindi; Shane A. Snyder
This study investigated, using rapid small-scale column testing, the breakthrough of dissolved organic matter (DOM) and eleven emerging organic contaminants (EOCs) during granular activated carbon (GAC) filtration of different water qualities, including wastewater, surface water and synthetic water (riverine organic matter dissolved in deionized water). Fluorescing organic matter was better adsorbed than UV absorbance at 254 nm (UV254) and dissolved organic carbon (DOC) in all tested water. Furthermore, highest adsorption of DOM (in terms of DOC, UV254 and fluorescence) was observed during wastewater filtration. UV absorbing DOM had fast and similar breakthrough in surface water and synthetic water, whereas fluorescence breakthrough was very rapid only in synthetic water. PARAFAC modeling showed that different fluorescing components were differently adsorbed during GAC process. Particularly, fluorescing components with maxima intensity at higher excitation wavelengths, which are corresponding to humic-like fluorescence substances, were better removed than other components in all waters. As opposed to DOM, EOCs were better adsorbed during synthetic water filtration, whereas the fastest EOCs breakthrough was observed during filtration of wastewater, which was the water that determined the highest carbon fouling. Exception was represented by long-chained perfluoroalkylated substances (i.e., PFOA, PFDA and PFOS). Indeed, adsorption of these compounds resulted independent of water quality. In this study was also investigated the applicability of UV254 and fluorescing PARAFAC components to act as surrogates in predicting EOCs removal by GAC in different water matrices. Empirical linear correlation for the investigated EOCs were determined with UV254 and fluorescing components in all water qualities. However, fluorescence measurements resulted more sensitive than UV254 to predict EOC breakthrough during GAC adsorption. When the data from all water qualities was combined, good correlations between the microbial humic-like PARAFAC component and EOC removals were still observed and they resulted independent of water quality if considering only real water matrices (wastewater and surface water). On the contrary, correlations between EOC removals and UV254 removals were independent of water quality when combining data of surface waters and synthetic water, but a different correlation model was needed to predict EOCs breakthrough in wastewater.
Frontiers International Conference on Wastewater Treatment and Modelling | 2017
Massimiliano Sgroi; Catiane Pelissari; C. Ávila; Pablo Heleno Sezerino; Federico G.A. Vagliasindi; Joan García; Paolo Roccaro
Constructed wetlands (CWs) are nature-based wastewater treatment systems, which are often implemented in decentralized areas and small communities. In recent decades, the CW technology has rapidly evolved through the use of various designs and operational modes or other intensifications so as to improve effluent water quality with respect to various pollutants from wastewater. In the present study, the removal of conventional water quality parameters, emerging organic contaminants (EOCs) and fluorescence signature was investigated in a hybrid constructed wetland system comprising different CW configurations: (i) unsaturated vertical subsurface flow (VF), (ii) partial saturated vertical subsurface flow (VF sat), (iii) saturated horizontal flow (HF) and (iv) free water surface (FWS) wetlands. The obtained results showed higher removal of BOD5, COD and fluorescing organic matter in the aerobic VF reactor, whereas the anoxic HF wetland was the most efficient unit for nitrogen removal. The partially saturated VF wetland showed a greater performance in the reduction of nitrogen and highly biodegradable EOCs than the unsaturated VF bed. Finally, linear regression analyses performed between removal of water quality parameters, EOCs and fluorescence measurements suggested the possibility to use fluorescence indexes as useful indicators of water treatment efficacy and/or surrogate parameters for EOCs monitoring.
Water Research | 2015
Tarun Anumol; Massimiliano Sgroi; Minkyu Park; Paolo Roccaro; Shane A. Snyder