Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Romania is active.

Publication


Featured researches published by Paolo Romania.


Haematologica | 2009

MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis

Nadia Felli; Francesca Pedini; Paolo Romania; Mauro Biffoni; Ornella Morsilli; Germana Castelli; Simona Santoro; Simona Chicarella; Antonio Sorrentino; Cesare Peschle; Giovanna Marziali

Erythropoiesis is tightly controlled by transcription factors, one of which is the LIM domain-only protein LMO2, but little is still known of the involvement of microRNAs (miRs) in erythroid cell development. This article shows that miR-223 downregulates the expression of LMO2 and thereby blocks erythroid differentiation. Se related perspective article on page 447. Background MicroRNAs are small non-coding RNAs that regulate gene expression through mRNA degradation or translational inhibition. MicroRNAs are emerging as key regulators of normal hematopoiesis and hematologic malignancies. Several miRNAs are differentially expressed during hematopoiesis and their specific expression regulates key functional proteins involved in hematopoietic lineage differentiation. This study focused on the functional role of microRNA-223 (miR-223) on erythroid differentiation. Design and Methods Purified cord blood CD34+ hematopoietic progenitor cells were grown in strictly controlled conditions in the presence of saturating dosage of erythropoietin to selectively induce erythroid differentiation. The effects of enforced expression of miR-223 in unilin-eage erythroid cultures were evaluated in liquid phase culture experiments and clonogenic studies. Results In unilineage erythroid culture of cord blood CD34+ hematopoietic progenitor cells miR-223 is down-regulated, whereas LMO2, an essential protein for erythroid differentiation, is up-regulated. Functional studies showed that enforced expression of miR-223 reduces the mRNA and protein levels of LMO2, by binding to LMO2 3’ UTR, and impairs differentiation of erythroid cells. Accordingly, knockdown of LMO2 by short interfering RNA mimics the action of miR-223. Furthermore, hematopoietic progenitor cells transduced with miR-223 showed a significant reduction of their erythroid clonogenic capacity, suggesting that downmodulation of this miRNA is required for erythroid progenitor recruitment and commitment. Conclusions These results show that the decline of miR-223 is an important event for erythroid differentiation that leads to the expansion of erythroblast cells at least partially mediated by unblocking LMO2 protein expression.


PLOS ONE | 2013

MicroRNA-486-3p Regulates γ-Globin Expression in Human Erythroid Cells by Directly Modulating BCL11A

Valentina Lulli; Paolo Romania; Ornella Morsilli; Paolo Cianciulli; Marco Gabbianelli; Ugo Testa; Giovanna Marziali

MicroRNAs (miRNAs) play key roles in modulating a variety of cellular processes through repression of mRNAs target. The functional relevance of microRNAs has been proven in normal and malignant hematopoiesis. While analyzing miRNAs expression profile in unilineage serum-free liquid suspension unilineage cultures of peripheral blood CD34+ hematopoietic progenitor cells (HPCs) through the erythroid, megakaryocytic, granulocytic and monocytic pathways, we identified miR-486-3p as mainly expressed within the erythroid lineage. We showed that miR-486-3p regulates BCL11A expression by binding to the extra-long isoform of BCL11A 3′UTR. Overexpression of miR-486-3p in erythroid cells resulted in reduced BCL11A protein levels, associated to increased expression of γ-globin gene, whereas inhibition of physiological miR-486-3p levels increased BCL11A and, consequently, reduced γ-globin expression. Thus, miR-486-3p regulating BCL11A expression might contributes to fetal hemoglobin (HbF) modulation and arise the question as to what extent this miRNA might contribute to different HbF levels observed among β-thalassemia patients. Erythroid cells, differentiated from PB CD34+ cells of a small cohort of patients affected by major or intermedia β-thalassemia, showed miR-486-3p levels significantly higher than those observed in normal counterpart. Importantly, in these patients, miR-486-3p expression correlates with increased HbF synthesis. Thus, our data indicate that miR-486-3p might contribute to different HbF levels observed among thalassemic patients and, possibly, to the clinical severity of the disease.


Pigment Cell & Melanoma Research | 2011

Constitutive activation of the ETS‐1‐miR‐222 circuitry in metastatic melanoma

Gianfranco Mattia; M. Cristina Errico; Federica Felicetti; Marina Petrini; Lisabianca Bottero; Luisa Tomasello; Paolo Romania; Alessandra Boe; Patrizia Segnalini; Antonio Di Virgilio; Mario P. Colombo; Alessandra Carè

MicroRNAs‐221 and ‐222 are highly upregulated in several solid tumors, including melanomas. We demonstrate that the proto‐oncogene ETS‐1, involved in the pathogenesis of cancers of different origin, is a transcriptional regulator of miR‐222 by direct binding to its promoter region. Differently from 293FT cells or early stage melanomas, where unphosphorylated ETS‐1 represses miR‐222 transcription, in metastatic melanoma the constitutively Thr‐38 phosphorylated fraction of ETS‐1 induces miR‐222. Despite its stepwise decreased expression along with melanoma progression, the oncogenic activity of ETS‐1 relies on its RAS/RAF/ERK‐dependent phosphorylation status more than on its total amount. To close the loop, we demonstrate ETS‐1 as a direct target of miR‐222, but not miR‐221, showing the novel option of their uncoupled functions. In addition, a spatial redistribution of ETS‐1 protein from the nucleus to the cytoplasm is also evidenced in advanced melanoma cells. Finally, in vivo studies confirmed the contribution of miR‐222 to the increased invasive potential obtained by ETS‐ silencing.


Cell Death & Differentiation | 2006

Overexpression of Ets-1 in human hematopoietic progenitor cells blocks erythroid and promotes megakaryocytic differentiation

Valentina Lulli; Paolo Romania; Ornella Morsilli; Marco Gabbianelli; A Pagliuca; S Mazzeo; Ugo Testa; Cesare Peschle; Giovanna Marziali

Ets-1 is a widely expressed transcription factor implicated in development, tumorigenesis and hematopoiesis. We analyzed Ets-1 gene expression during human erythroid and megakaryocytic (MK) differentiation in unilineage cultures of CD34+ progenitor cells. During erythroid maturation, Ets-1 is downmodulated and exported from the nucleus into the cytoplasm through an active mechanism mediated by a leucine-rich nuclear export signal. In contrast, during megakaryocytopoiesis Ets-1 increases and remains localized in the nucleus up to terminal maturation. Overexpression of Ets-1 in erythroid cells blocks maturation at the polychromatophilic stage, increases GATA-2 and decreases both GATA-1 and erythropoietin receptor expression. Conversely, Ets-1 overexpressing megakaryocytes are characterized by enhanced differentiation and maturation, coupled with upmodulation of GATA-2 and megakaryocyte-specific genes. We show that Ets-1 binds to and activates the GATA-2 promoter, in vitro and in vivo, indicating that one of the pathways through which Ets-1 blocks erythroid and promotes MK differentiation is via upmodulation of GATA-2 expression.


International Journal of Molecular Sciences | 2012

Role of Endoplasmic Reticulum Aminopeptidases in Health and Disease: from Infection to Cancer

Loredana Cifaldi; Paolo Romania; Silvia Lorenzi; Franco Locatelli; Doriana Fruci

Endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 (ERAPs) are essential for the maturation of a wide spectrum of proteins involved in various biological processes. In the ER, these enzymes work in concert to trim peptides for presentation on MHC class I molecules. Loss of ERAPs function substantially alters the repertoire of peptides presented by MHC class I molecules, critically affecting recognition of both NK and CD8+ T cells. In addition, these enzymes are involved in the modulation of inflammatory responses by promoting the shedding of several cytokine receptors, and in the regulation of both blood pressure and angiogenesis. Recent genome-wide association studies have identified common variants of ERAP1 and ERAP2 linked to several human diseases, ranging from viral infections to autoimmunity and cancer. More recently, inhibition of ER peptide trimming has been shown to play a key role in stimulating innate and adaptive anti-tumor immune responses, suggesting that inhibition of ERAPs might be exploited for the establishment of innovative therapeutic approaches against cancer. This review summarizes data currently available for ERAP enzymes in ER peptide trimming and in other immunological and non-immunological functions, paying attention to the emerging role played by these enzymes in human diseases.


OncoImmunology | 2015

Tumor-infiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma

Marco Mina; Renata Boldrini; Arianna Citti; Paolo Romania; Valerio D'Alicandro; Maretta De Ioris; Aurora Castellano; Cesare Furlanello; Franco Locatelli; Doriana Fruci

Neuroblastoma grows within an intricate network of different cell types including epithelial, stromal and immune cells. The presence of tumor-infiltrating T cells is considered an important prognostic indicator in many cancers, but the role of these cells in neuroblastoma remains to be elucidated. Herein, we examined the relationship between the type, density and organization of infiltrating T cells and clinical outcome within a large collection of neuroblastoma samples by quantitative analysis of immunohistochemical staining. We found that infiltrating T cells have a prognostic value greater than, and independent of, the criteria currently used to stage neuroblastoma. A variable in situ structural organization and different concurrent infiltration of T-cell subsets were detected in tumors with various outcomes. Low-risk neuroblastomas were characterized by a higher number of proliferating T cells and a more structured T-cell organization, which was gradually lost in tumors with poor prognosis. We defined an immunoscore based on the presence of CD3+, CD4+ and CD8+ infiltrating T cells that associates with favorable clinical outcome in MYCN-amplified tumors, improving patient survival when combined with the v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) status. These findings support the hypothesis that infiltrating T cells influence the behavior of neuroblastoma and might be of clinical importance for the treatment of patients.


Cancer Research | 2015

ERAP1 regulates natural killer cell function by controlling the engagement of inhibitory receptors

Loredana Cifaldi; Paolo Romania; Michela Falco; Silvia Lorenzi; Raffaella Meazza; Stefania Petrini; Marco Andreani; Daniela Pende; Franco Locatelli; Doriana Fruci

The endoplasmic reticulum aminopeptidase ERAP1 regulates innate and adaptive immune responses by trimming peptides for presentation by MHC class I (MHC-I) molecules. Herein, we demonstrate that genetic or pharmacological inhibition of ERAP1 on human tumor cell lines perturbs their ability to engage several classes of inhibitory receptors by their specific ligands, including killer cell Ig-like receptors (KIR) by classical MHC-I-peptide (pMHC-I) complexes and the lectin-like receptor CD94-NKG2A by nonclassical pMHC-I complexes, in each case leading to natural killer (NK) cell killing. The protective effect of pMHC-I complexes could be restored in ERAP1-deficient settings by the addition of known high-affinity peptides, suggesting that ERAP1 was needed to positively modify the affinity of natural ligands. Notably, ERAP1 inhibition enhanced the ability of NK cells to kill freshly established human lymphoblastoid cell lines from autologous or allogeneic sources, thereby promoting NK cytotoxic activity against target cells that would not be expected because of KIR-KIR ligand matching. Overall, our results identify ERAP1 as a modifier to leverage immune functions that may improve the efficacy of NK cell-based approaches for cancer immunotherapy.


Haematologica | 2010

Transcriptional silencing of the ETS1 oncogene contributes to human granulocytic differentiation

Valentina Lulli; Paolo Romania; Roberta Riccioni; Alessandra Boe; Francesco Lo-Coco; Ugo Testa; Giovanna Marziali

Background Ets-1 is a widely expressed transcription factor implicated in several biological processes including hematopoiesis, where it contributes to the regulation of cellular differentiation. The functions of Ets-1 are regulated by transcription factors as well as by phosphorylation events: phosphorylation of threonine 38 activates Ets-1, whereas phosphorylation of a cluster of serines within exon VII reduces DNA binding activity. This study focuses on the role of Ets-1 during granulocytic differentiation of NB4 promyelocytic and HL60 myeloblastic leukemia cell lines induced by all-trans retinoic acid. Design and Methods Ets-1 expression was measured by real-time reverse transcriptase polymerase chain reaction and western blotting. The role of Ets-1 during all-trans retinoic acid-induced differentiation was analyzed by using a transdominant negative molecule or small interfering RNA. Results NB4 and HL60 cell lines expressed high levels of p51 Ets-1, while the splice variant isoform that lacks exon VII (p42) was almost undetectable. The addition of all-trans retinoic acid reduced p51 Ets-1 levels and induced inhibitory phosphorylation of the remaining protein. Expression of Ets-1 was also reduced during dimethylsulfoxide-induced differentiation and during granulocytic differentiation of human CD34+ hematopoietic progenitor cells but not in NB4.R2 and HL60R cells resistant to all-trans retinoic acid. In line with these observations, transduction of a transdominant negative molecule of Ets-1, which inhibited DNA binding and transcriptional activity of the wild-type Ets-1, significantly increased chemical-induced differentiation. Consistently, Ets-1 knockdown by small interfering RNA increased the number of mature neutrophils upon addition of all-trans retinoic acid. Interestingly, p51 Ets-1 over-expression was frequently observed in CD34+ hematopoietic progenitor cells derived from patients with acute myeloid leukemia, as compared to its expression in normal CD34+ cells. Conclusions Our results indicated that a decreased expression of Ets-1 protein generalizes to granulocytic differentiation and may represent a crucial event for granulocytic maturation.


Clinical Cancer Research | 2017

PD-L1 Is a Therapeutic Target of the Bromodomain Inhibitor JQ1 and, Combined with HLA Class I, a Promising Prognostic Biomarker in Neuroblastoma

Ombretta Melaiu; Marco Chierici; Renata Boldrini; Giuseppe Jurman; Paolo Romania; Valerio D'Alicandro; Maria Chiara Benedetti; Aurora Castellano; Tao Liu; Cesare Furlanello; Franco Locatelli; Doriana Fruci

Purpose: This study sought to evaluate the expression of programmed cell death-ligand-1 (PD-L1) and HLA class I on neuroblastoma cells and programmed cell death-1 (PD-1) and lymphocyte activation gene 3 (LAG3) on tumor-infiltrating lymphocytes to better define patient risk stratification and understand whether this tumor may benefit from therapies targeting immune checkpoint molecules. Experimental Design: In situ IHC staining for PD-L1, HLA class I, PD-1, and LAG3 was assessed in 77 neuroblastoma specimens, previously characterized for tumor-infiltrating T-cell density and correlated with clinical outcome. Surface expression of PD-L1 was evaluated by flow cytometry and IHC in neuroblastoma cell lines and tumors genetically and/or pharmacologically inhibited for MYC and MYCN. A dataset of 477 human primary neuroblastomas from GEO and ArrayExpress databases was explored for PD-L1, MYC, and MYCN correlation. Results: Multivariate Cox regression analysis demonstrated that the combination of PD-L1 and HLA class I tumor cell density is a prognostic biomarker for predicting overall survival in neuroblastoma patients (P = 0.0448). MYC and MYCN control the expression of PD-L1 in neuroblastoma cells both in vitro and in vivo. Consistently, abundance of PD-L1 transcript correlates with MYC expression in primary neuroblastoma. Conclusions: The combination of PD-L1 and HLA class I represents a novel prognostic biomarker for neuroblastoma. Pharmacologic inhibition of MYCN and MYC may be exploited to target PD-L1 and restore an efficient antitumor immunity in high-risk neuroblastoma. Clin Cancer Res; 23(15); 4462–72. ©2017 AACR.


International Journal of Molecular Sciences | 2012

Epigenetic Deregulation of MicroRNAs in Rhabdomyosarcoma and Neuroblastoma and Translational Perspectives

Paolo Romania; Alice Bertaina; Giorgia Bracaglia; Franco Locatelli; Doriana Fruci; Rossella Rota

Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed.

Collaboration


Dive into the Paolo Romania's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanna Marziali

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Doriana Fruci

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Loredana Cifaldi

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ornella Morsilli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Ugo Testa

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Valentina Lulli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Aurora Castellano

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ombretta Melaiu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Renata Boldrini

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge