Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paolo Saccardo is active.

Publication


Featured researches published by Paolo Saccardo.


Biotechnology Advances | 2009

Peptide-mediated DNA condensation for non-viral gene therapy

Paolo Saccardo; Antonio Villaverde; Nuria González-Montalbán

The construction of non-viral, virus-like vehicles for gene therapy involves the functionalization of multipartite constructs with nucleic acid-binding, cationic agents. Short basic peptides, alone or as fusion proteins, are appropriate DNA binding and condensing elements, whose incorporation into gene delivery vehicles results in the formation of protein-DNA complexes of appropriate size for cell internalization and intracellular trafficking. We review here the most used cationic peptides for artificial virus construction as well as the recently implemented strategies to control the architecture and biological activities of the resulting nanosized particles.


Biomaterials | 2012

Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles

Ugutz Unzueta; Neus Ferrer-Miralles; Juan Cedano; Xu Zikung; Mireia Pesarrodona; Paolo Saccardo; Elena García-Fruitós; Joan Domingo-Espín; Pradeep Kumar; Kailash Chand Gupta; Ramon Mangues; Antonio Villaverde; Esther Vázquez

Controlling the self-assembling of building blocks as nanoscale entities is a requisite for the generation of bio-inspired vehicles for nanomedicines. A wide spectrum of functional peptides has been incorporated to different types of nanoparticles for the delivery of conventional drugs and nucleic acids, enabling receptor-specific cell binding and internalization, endosomal escape, cytosolic trafficking, nuclear targeting and DNA condensation. However, the development of architectonic tags to induce the self-assembling of functionalized monomers has been essentially neglected. We have examined here the nanoscale architectonic capabilities of arginine-rich cationic peptides, that when displayed on His-tagged proteins, promote their self-assembling as monodisperse, protein-only nanoparticles. The scrutiny of the cross-molecular interactivity cooperatively conferred by poly-arginines and poly-histidines has identified regulatable electrostatic interactions between building blocks that can also be engineered to encapsulate cargo DNA. The combined use of cationic peptides and poly-histidine tags offers an unusually versatile approach for the tailored design and biofabrication of protein-based nano-therapeutics, beyond the more limited spectrum of possibilities so far offered by self-assembling amyloidogenic peptides.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

Rational engineering of single-chain polypeptides into protein-only, BBB-targeted nanoparticles

Naroa Serna; María Virtudes Céspedes; Paolo Saccardo; Zhikun Xu; Ugutz Unzueta; Patricia Álamo; Mireia Pesarrodona; Alejandro Sánchez-Chardi; Mónica Roldán; Ramon Mangues; Esther Vázquez; Antonio Villaverde; Neus Ferrer-Miralles

A single chain polypeptide containing the low density lipoprotein receptor (LDLR) ligand Seq-1 with blood-brain barrier (BBB) crossing activity has been successfully modified by conventional genetic engineering to self-assemble into stable protein-only nanoparticles of 30nm. The nanoparticulate presentation dramatically enhances in vitro, LDLR-dependent cell penetrability compared to the parental monomeric version, but the assembled protein does not show any enhanced brain targeting upon systemic administration. While the presentation of protein drugs in form of nanoparticles is in general advantageous regarding correct biodistribution, this principle might not apply to brain targeting that is hampered by particular bio-physical barriers. Irrespective of this fact, which is highly relevant to the nanomedicine of central nervous system, engineering the cationic character of defined protein stretches is revealed here as a promising and generic approach to promote the controlled oligomerization of biologically active protein species as still functional, regular nanoparticles.


Methods of Molecular Biology | 2015

General Introduction: Recombinant Protein Production and Purification of Insoluble Proteins

Neus Ferrer-Miralles; Paolo Saccardo; José Luis Corchero; Zhikun Xu; Elena García-Fruitós

Proteins are synthesized in heterologous systems because of the impossibility to obtain satisfactory yields from natural sources. The production of soluble and functional recombinant proteins is among the main goals in the biotechnological field. In this context, it is important to point out that under stress conditions, protein folding machinery is saturated and this promotes protein misfolding and, consequently, protein aggregation. Thus, the selection of the optimal expression organism and the most appropriate growth conditions to minimize the formation of insoluble proteins should be done according to the protein characteristics and downstream requirements. Escherichia coli is the most popular recombinant protein expression system despite the great development achieved so far by eukaryotic expression systems. Besides, other prokaryotic expression systems, such as lactic acid bacteria and psychrophilic bacteria, are gaining interest in this field. However, it is worth mentioning that prokaryotic expression system poses, in many cases, severe restrictions for a successful heterologous protein production. Thus, eukaryotic systems such as mammalian cells, insect cells, yeast, filamentous fungus, and microalgae are an interesting alternative for the production of these difficult-to-express proteins.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

RGD-based cell ligands for cell-targeted drug delivery act as potent trophic factors.

Joan Domingo-Espín; Valérie Petegnief; Núria de Vera; Oscar Conchillo-Solé; Paolo Saccardo; Ugutz Unzueta; Esther Vázquez; Juan Cedano; Luciana Negro; Xavier Daura; Hugo Peluffo; Anna M. Planas; Antonio Villaverde; Neus Ferrer-Miralles

UNLABELLED Integrin-binding, Arg-Gly-Asp (RGD)-containing peptides are the most widely used agents to deliver drugs, nanoparticles, and imaging agents. Although in nature, several protein-mediated signal transduction events depend on RGD motifs, the potential of RGD-empowered materials in triggering undesired cell-signaling cascades has been neglected. Using an RGD-functionalized protein nanoparticle, we show here that the RGD motif acts as a powerful trophic factor, supporting extracellular signal-regulated kinase 1/2 (ERK1/2)-linked cell proliferation and partial differentiation of PC12 cells, a neuronlike model. FROM THE CLINICAL EDITOR This work focuses on RGD peptides, which are among the most commonly used tags for targeted drug delivery. They also promote protoneurite formation and expression of neuronal markers (MAP2) in model PC12 cells, which is an unexpected but relevant event in the functionalization of drugs and their nanocarriers.


Nanotechnology | 2017

Engineering tumor cell targeting in nanoscale amyloidal materials.

Ugutz Unzueta; Joaquin Seras-Franzoso; María Virtudes Céspedes; Paolo Saccardo; Francisco Cortés; Fabián Rueda; Elena García-Fruitós; Neus Ferrer-Miralles; Ramon Mangues; Esther Vázquez; Antonio Villaverde

Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

CXCR4+-targeted protein nanoparticles produced in the food-grade bacterium Lactococcus lactis

Olivia Cano-Garrido; María Virtudes Céspedes; Ugutz Unzueta; Paolo Saccardo; Mónica Roldán; Alejandro Sánchez-Chardi; Rafael Cubarsi; Esther Vázquez; Ramon Mangues; Elena García-Fruitós; Antonio Villaverde

AIM Lactococcus lactis is a Gram-positive (endotoxin-free) food-grade bacteria exploited as alternative to Escherichia coli for recombinant protein production. We have explored here for the first time the ability of this platform as producer of complex, self-assembling protein materials. MATERIALS & METHODS Biophysical properties, cell penetrability and in vivo biodistribution upon systemic administration of tumor-targeted protein nanoparticles produced in L. lactis have been compared with the equivalent material produced in E. coli. RESULTS Protein nanoparticles have been efficiently produced in L. lactis, showing the desired size, internalization properties and biodistribution. CONCLUSION In vitro and in vivo data confirm the potential and robustness of the production platform, pointing out L. lactis as a fascinating cell factory for the biofabrication of protein materials intended for therapeutic applications.


Applied Microbiology and Biotechnology | 2016

Tools to cope with difficult-to-express proteins

Paolo Saccardo; José Luis Corchero; Neus Ferrer-Miralles

The identification of DNA coding sequences contained in the genome of many organisms coupled to the use of high throughput approaches has fueled the field of recombinant protein production. Apart from basic research interests, the growing relevance of this field is highlighted by the global sales of the top ten biopharmaceuticals on the market, which exceeds the trillion USD in a steady increasing tendency. Therefore, the demand of biological compounds seems to have a long run on the market. One of the most popular expression systems is based on Escherichia coli cells which apart from being cost-effective counts with a large selection of resources. However, a significant percentage of the genes of interest are not efficiently expressed in this system, or the expressed proteins are accumulated within aggregates, degraded or lacking the desired biological activity, being finally discarded. In some instances, expressing the gene in a homologous expression system might alleviate those drawbacks but then the process usually increases in complexity and is not as cost-effective as the prokaryotic systems. An increasing toolbox is available to approach the production and purification of those difficult-to-express proteins, including different expression systems, promoters with different strengths, cultivation media and conditions, solubilization tags and chaperone coexpression, among others. However, in most cases, the process follows a non-integrative trial and error strategy with discrete success. This review is focused on the design of the whole process by using an integrative approach, taken into account the accumulated knowledge of the pivotal factors that affect any of the key processes, in an attempt to rationalize the efforts made in this appealing field.


Progress in Molecular Biology and Translational Science | 2011

Engineered biological entities for drug delivery and gene therapy protein nanoparticles.

Joan Domingo-Espín; Ugutz Unzueta; Paolo Saccardo; Escarlata Rodríguez-Carmona; José Luis Corchero; Esther Vázquez; Neus Ferrer-Miralles

The development of genetic engineering techniques has speeded up the growth of the biotechnological industry, resulting in a significant increase in the number of recombinant protein products on the market. The deep knowledge of protein function, structure, biological interactions, and the possibility to design new polypeptides with desired biological activities have been the main factors involved in the increase of intensive research and preclinical and clinical approaches. Consequently, new biological entities with added value for innovative medicines such as increased stability, improved targeting, and reduced toxicity, among others have been obtained. Proteins are complex nanoparticles with sizes ranging from a few nanometers to a few hundred nanometers when complex supramolecular interactions occur, as for example, in viral capsids. However, even though protein production is a delicate process that imposes the use of sophisticated analytical methods and negative secondary effects have been detected in some cases as immune and inflammatory reactions, the great potential of biodegradable and tunable protein nanoparticles indicates that protein-based biotechnological products are expected to increase in the years to come.


Molecular therapy. Methods & clinical development | 2014

Comparative analysis of lentiviral vectors and modular protein nanovectors for traumatic brain injury gene therapy.

María Luciana Negro-Demontel; Paolo Saccardo; Cecilia Giacomini; Rafael J. Yáñez-Muñoz; Neus Ferrer-Miralles; Esther Vázquez; Antonio Villaverde; Hugo Peluffo

Traumatic brain injury (TBI) remains as one of the leading causes of mortality and morbidity worldwide and there are no effective treatments currently available. Gene therapy applications have emerged as important alternatives for the treatment of diverse nervous system injuries. New strategies are evolving with the notion that each particular pathological condition may require a specific vector. Moreover, the lack of detailed comparative studies between different vectors under similar conditions hampers the selection of an ideal vector for a given pathological condition. The potential use of lentiviral vectors versus several modular protein-based nanovectors was compared using a controlled cortical impact model of TBI under the same gene therapy conditions. We show that variables such as protein/DNA ratio, incubation volume, and presence of serum or chloroquine in the transfection medium impact on both nanovector formation and transfection efficiency in vitro. While lentiviral vectors showed GFP protein 1 day after TBI and increased expression at 14 days, nanovectors showed stable and lower GFP transgene expression from 1 to 14 days. No toxicity after TBI by any of the vectors was observed as determined by resulting levels of IL-1β or using neurological sticky tape test. In fact, both vector types induced functional improvement per se.

Collaboration


Dive into the Paolo Saccardo's collaboration.

Top Co-Authors

Avatar

Neus Ferrer-Miralles

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Elena García-Fruitós

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Joan Domingo-Espín

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Alejandro Sánchez-Chardi

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

José Luis Corchero

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge