Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Parham Alaei is active.

Publication


Featured researches published by Parham Alaei.


Medical Physics | 2009

Inclusion of the dose from kilovoltage cone beam CT in the radiation therapy treatment plans

Parham Alaei; G Ding; Huaiqun Guan

PURPOSE Cone beam CT is increasingly being used for daily patient positioning verification during radiation therapy treatments. The daily use of CBCT could lead to accumulated patient doses higher than the older technique of weekly portal imaging. There have been several studies focusing on measurement or calculation of the patient dose from CBCT recently. METHODS This study investigates the feasibility of configuring a kV x-ray source in a commercial treatment planning system to calculate the dose to patient resulting from an IGRT procedure. The method proposed in this article can be used to calculate dose from CBCT imaging procedure and include that in the patient treatment plans. RESULTS The kilovoltage beam generated by the CBCT imager has been modeled using the planning system. The modeled profiles agree with the measured ones to within 5%. The modeled beam was used to calculate dose to phantom in the pelvic region and the calculations were compared to TLD measurements. The agreement between calculated and measured doses ranges from 0% to 19% in soft tissue with larger variations observed near and within the bone. CONCLUSIONS The modeling of the beam produces reasonable results and the dose calculation comparisons indicate the potential for computing kilovoltage CBCT doses using a treatment planning system. Further improvements in the dose calculation algorithm are necessary, especially for dose calculations in and near the bone.


Medical Physics | 2003

In vivo diode dosimetry for routine quality assurance in IMRT.

P Higgins; Parham Alaei; Bruce J. Gerbi; Kathryn E. Dusenbery

Due to the complexity of IMRT dosimetry, dose delivery evaluation is generally done using a treatment plan in which the optimized fluence distribution has been transferred to a test phantom for accessibility and simplicity of measurement. The actual patient doses may be reconstructed in vivo through the use of electronic portal imaging devices or films, but the assessment of absolute dose from these measurements is time-consuming and complicated. In our clinic we have instituted the use of routine diode dosimetry for IMRT patients following the same procedure used for standard radiation therapy patients in which each new treatment field is checked at the start of treatment. For standard cases the dose at dmax is calculated as part of the monitor unit calculation. For the IMRT cases, the dose contribution to the dmax depth for each field is taken from the treatment plan. We found that about 90% of the diode measurements agreed to within +/- 10% of the planned doses (45/51 fields) and 63% (32/51 fields) achieved +/- 5% agreement. By using this direct in vivo method to verify the clinical doses delivered, we have been able to make a uniform startup procedure for all patients while simplifying our IMRT QA process.


Physica Medica | 2015

Imaging dose from cone beam computed tomography in radiation therapy

Parham Alaei; Emiliano Spezi

Imaging dose in radiation therapy has traditionally been ignored due to its low magnitude and frequency in comparison to therapeutic dose used to treat patients. The advent of modern, volumetric, imaging modalities, often as an integral part of linear accelerators, has facilitated the implementation of image-guided radiation therapy (IGRT), which is often accomplished by daily imaging of patients. Daily imaging results in additional dose delivered to patient that warrants new attention be given to imaging dose. This review summarizes the imaging dose delivered to patients as the result of cone beam computed tomography (CBCT) imaging performed in radiation therapy using current methods and equipment. This review also summarizes methods to calculate the imaging dose, including the use of Monte Carlo (MC) and treatment planning systems (TPS). Peripheral dose from CBCT imaging, dose reduction methods, the use of effective dose in describing imaging dose, and the measurement of CT dose index (CTDI) in CBCT systems are also reviewed.


Medical Physics | 2000

Evaluation of a model-based treatment planning system for dose computations in the kilovoltage energy range.

Parham Alaei; Bruce J. Gerbi; Richard A. Geise

The ability to determine dose distribution and calculate organ doses from diagnostic x rays has become increasingly important in recent years because of relatively high doses in interventional radiology and cardiology procedures. In an attempt to determine the dose from both diagnostic and orthovoltage x rays, we have used a commercial treatment planning system (Pinnacle, ADAC Laboratories, Milpitas, CA) to calculate the doses in phantoms from kilovoltage x rays. The planning systems capabilities for dose computation have been extended to lower energies by the addition of energy deposition kernels in the 20-110 keV range and modeling of the 60, 80, 100, and 120 kVp beams using the system. We compared the dose calculated by the system with that measured using thermoluminescent dosimeters (TLDs) placed in various positions within several phantoms. The phantoms consisted of a cubical solid water phantom, the solid water phantom with added lung and bone inhomogeneities, and the Rando anthropomorphic phantom. Using Pinnacle, a treatment plan was generated using CT scans of each of these phantoms and point doses at the positions of TLD chips were calculated. Comparisons of measured and computed values show an average difference of less than 2% within materials of atomic number less than and equal to that of water. The algorithm, however, does not produce accurate results in and around bone inhomogeneities and underestimates attenuation of x rays by bone by an average of 145%. A modification to the CT number-to-density conversion table used by the system resulted in significant improvements in the dose calculated to points beyond bone.


Journal of Applied Clinical Medical Physics | 2012

Commissioning kilovoltage cone-beam CT beams in a radiation therapy treatment planning system

Parham Alaei; Emiliano Spezi

The feasibility of accounting of the dose from kilovoltage cone‐beam CT in treatment planning has been discussed previously for a single cone‐beam CT (CBCT) beam from one manufacturer. Modeling the beams and computing the dose from the full set of beams produced by a kilovoltage cone‐beam CT system requires extensive beam data collection and verification, and is the purpose of this work. The beams generated by Elekta X‐ray volume imaging (XVI) kilovoltage CBCT (kV CBCT) system for various cassettes and filters have been modeled in the Philips Pinnacle treatment planning system (TPS) and used to compute dose to stack and anthropomorphic phantoms. The results were then compared to measurements made using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) simulations. The agreement between modeled and measured depth‐dose and cross profiles is within 2% at depths beyond 1 cm for depth‐dose curves, and for regions within the beam (excluding penumbra) for cross profiles. The agreements between TPS‐calculated doses, TLD measurements, and Monte Carlo simulations are generally within 5% in the stack phantom and 10% in the anthropomorphic phantom, with larger variations observed for some of the measurement/calculation points. Dose computation using modeled beams is reasonably accurate, except for regions that include bony anatomy. Inclusion of this dose in treatment plans can lead to more accurate dose prediction, especially when the doses to organs at risk are of importance. PACS numbers: 87.55.D, 87.55.K, 87.56.bd


Medical Physics | 2001

Lung dose calculations at kilovoltage x-ray energies using a model-based treatment planning system.

Parham Alaei; Bruce J. Gerbi; Richard A. Geise

The determination of the dose to organs from diagnostic x rays has become important because of reports of radiation injury to patients from fluoroscopically guided interventional procedures. We have modified a convolution/superposition-based treatment planning system to compute the dose distribution for kilovoltage beams. We computed lung doses using this system and compared them to those calculated using the CDI3 organ dose calculation program. We also computed average lung doses from a simulated radiofrequency ablation procedure and compared our results to published doses for a similar procedure. Doses calculated using this system were an average of 20% lower for AP beams and 7% higher for PA beams than those obtained using CDI3. The ratio of the average dose to the lungs to the skin dose from the simulated ablation procedure ranged from 25% higher to 15% lower than that determined by other authors. Our results show that a treatment planning system designed for use in the megavoltage energy range can be used for calculating organ doses in the diagnostic energy range. Our doses compare well with those previously reported. Differences are partly due to variations in experimental techniques. Using a three-dimensional (3-D) treatment planning system to calculate dose also allows us to generate dose volume histograms (DVH) and compute normal tissue complication probabilities (NTCP) for diagnostic procedures.


Medical Physics | 2008

Introduction to Health Physics: Fourth Edition

Parham Alaei

Introduction to Health Physics: Fourth Edition Cember Herman and Johnson Thomas E. McGraw Hill Companies, Inc., New York, NY, 2008. Paperback 864 pp. Price:


International Journal of Radiation Oncology Biology Physics | 2014

Dosimetry of an in-line kilovoltage imaging system and implementation in treatment planning.

Yvonne Dzierma; Frank Nuesken; Wladimir Otto; Parham Alaei; Norbert Licht; Christian Rübe

69.95. ISBN: 9780071423083.


Journal of Applied Clinical Medical Physics | 2006

Performance evaluation and quality assurance of Varian enhanced dynamic wedges

Parham Alaei; P Higgins

PURPOSE To present the beam properties of the Siemens 70-kV and 121-kV linear accelerator-mounted imaging modalities and commissioning of the 121-kV beam in the Philips Pinnacle treatment planning system (TPS); measurements in an Alderson phantom were performed for verification of the model and to estimate the cone-beam CT (CBCT) imaging dose in the head and neck, thorax, and pelvis. METHODS AND MATERIALS The beam profiles and depth-dose curve were measured in an acrylic phantom using thermoluminescent dosimeters and a soft x-ray ionization chamber. Measurements were imported into the TPS, modeled, and verified by phantom measurements. RESULTS Modeling of the profiles and the depth-dose curve can be achieved with good quality. Comparison with the measurements in the Alderson phantom is generally good; only very close to bony structures is the dose underestimated by the TPS. For a 200° arc CBCT of the head and neck, a maximum dose of 7 mGy is measured; the thorax and pelvis 360° CBCTs give doses of 4-10 mGy and 7-15 mGy, respectively. CONCLUSIONS Dosimetric characteristics of the Siemens kVision imaging modalities are presented and modeled in the Pinnacle TPS. Thermoluminescent dosimeter measurements in the Alderson phantom agree well with the calculated TPS dose, validating the model and providing an estimate of the imaging dose for different protocols.


Medical Physics | 2001

Measurement of the dose deposition characteristics of x-ray fluoroscopy beams in water

Kenneth A. Fetterly; Bruce J. Gerbi; Parham Alaei; Richard A. Geise

Dynamic wedges have been used in clinical practice for many years. Obvious superiority of dynamic over physical wedges is accompanied by the increased overhead involved in verifying the accuracy and reliability of their use. Contrary to very limited QA required to ensure proper functioning of the physical wedges, dynamic wedges, like any other dynamic treatment, require a robust QA program. This work expands upon previous suggestions and describes a comprehensive QA program for Varian enhanced dynamic wedges (EDWs) and presents the results of an 18‐month evaluation of these wedges. The QA program includes daily, monthly, and yearly tests and individual treatment QA at the onset of use of the EDWs. The results of the 18‐month evaluation show reproducibility in the wedge factors of better than 1% and in dose profiles of better than 2% on a monthly basis. Daily output measurements are generally within 2% of expected values. PACS numbers: 87.53.Xd, 87.56.Fc

Collaboration


Dive into the Parham Alaei's collaboration.

Top Co-Authors

Avatar

P Higgins

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rezvan Azimi

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G Ding

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge