Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Parikshit Bagchi is active.

Publication


Featured researches published by Parikshit Bagchi.


Journal of Virology | 2010

Rotavirus Nonstructural Protein 1 Suppresses Virus-Induced Cellular Apoptosis To Facilitate Viral Growth by Activating the Cell Survival Pathways during Early Stages of Infection

Parikshit Bagchi; Dipanjan Dutta; Shiladitya Chattopadhyay; Anupam Mukherjee; Umesh Chandra Halder; Sagartirtha Sarkar; Nobumichi Kobayashi; Satoshi Komoto; Koki Taniguchi; Mamta Chawla-Sarkar

ABSTRACT Following virus infection, one of the cellular responses to limit the virus spread is induction of apoptosis. In the present study, we report role of rotavirus nonstructural protein 1 (NSP1) in regulating apoptosis by activating prosurvival pathways such as phosphatidylinositol 3-kinase (PI3K)/Akt and NF-κB (nuclear factor κB) during early hours of infections (2 to 8 hpi). The NSP1 mutant strain A5-16 induces weak and transient activation of Akt (protein kinase B) and p65 NF-κB compared to the isogenic wild-type strain A5-13 in MA104 or HT29 cells. The weak NF-κB promoter activity or Akt phosphorylation after A5-16 infection could be complemented in cells transfected with plasmid expressing NSP1 after infection with the rotavirus A5-16 strain. In cells either infected with A5-13 or transfected with pcD-NSP1, coimmunoprecipitation of NSP1 with phosphoinositide 3-kinase (PI3K) was observed, indicating that strong activation of PI3K/Akt could be due to its interaction with NSP1. In addition, after infection with same multiplicity of infection, A5-16 showed reduced number of viral particles compared to the A5-13 strain at the end of the replication cycle. A lower growth rate could be due to weak induction of PI3K/Akt and NF-κB, since the A5-13 strain also showed reduced growth in the presence of PI3K or NF-κB inhibitors. This effect was interferon independent; however, it was partly due to significantly higher caspase-3 activity, poly-ADP ribose polymerase (PARP) cleavage, and apoptosis during earlier stages of infection with the NSP1 mutant. Thus, our data suggest that NSP1 positively supports rotavirus growth by suppression of premature apoptosis for improved virus growth after infection.


Infection, Genetics and Evolution | 2010

Surveillance and molecular characterization of rotavirus strains circulating in Manipur, North-Eastern India: Increasing prevalence of emerging G12 strains.

Anupam Mukherjee; Shiladitya Chattopadhyay; Parikshit Bagchi; Dipanjan Dutta; Ng Brajachand Singh; Rashmi Arora; Umesh D. Parashar; Jon R. Gentsch; Mamta Chawla-Sarkar

To determine the frequency and genotypes of rotavirus strains, samples were collected from children hospitalized with acute diarrhea at the Regional Institute of Medical Sciences, Manipur. The globally common genotypes G1P[8] and G2P[4] constituted 58% of the total positive strains, while 3% and 8% strains were emerging genotypes, G9P[6] and G12P[6]. This is the first report of genotype G12 in Manipur. The G12 strains clustered with lineage III strains and had >98% identity with corresponding rotaviruses from Bangladesh, Thailand and the USA. Other uncommon G-P combinations including G4P[4], G4P[6], G10P[6] and G9P[19], along with a few strains that could not be typed were also found. The VP7 genes of G4 and G10 strains clustered with porcine and bovine strains, indicating possible zoonotic transmission. High frequency (36-62%) of rotavirus infection and predominance of G1P[8] and G2P[4] among children with acute diarrhea emphasized the need for implementation of currently available vaccines to reduce the burden of rotavirus induced diarrhea in India.


Virology | 2009

The molecular chaperone heat shock protein-90 positively regulates rotavirus infection

Dipanjan Dutta; Parikshit Bagchi; Arunachal Chatterjee; Mukti Kant Nayak; Anupam Mukherjee; Shiladitya Chattopadhyay; Shigeo Nagashima; Nobumichi Kobayashi; Satoshi Komoto; Koki Taniguchi; Mamta Chawla-Sarkar

Rotaviruses are the major cause of severe dehydrating gastroenteritis in children worldwide. In this study, we report a positive role of cellular chaperone Hsp90 during rotavirus infection. A highly specific Hsp90 inhibitor, 17-allylamono-demethoxygeldanamycin (17-AAG) was used to delineate the functional role of Hsp90. In MA104 cells treated with 17-AAG after viral adsorption, replication of simian (SA11) or human (KU) strains was attenuated as assessed by quantitating both plaque forming units and expression of viral genes. Phosphorylation of Akt and NFkappaB observed 2-4 hpi with SA11, was strongly inhibited in the presence of 17-AAG. Direct Hsp90-Akt interaction in virus infected cells was also reduced in the presence of 17-AAG. Anti-rotaviral effects of 17-AAG were due to inhibition of activation of Akt that was confirmed since, PI3K/Akt inhibitors attenuated rotavirus growth significantly. Thus, Hsp90 regulates rotavirus by modulating cellular signaling proteins. The results highlight the importance of cellular proteins during rotavirus infection and the possibility of targeting cellular chaperones for developing new anti-rotaviral strategies.


Journal of Biological Chemistry | 2012

Rotaviral enterotoxin nonstructural protein 4 targets mitochondria for activation of apoptosis during infection.

Rahul Bhowmick; Umesh Chandra Halder; Shiladitya Chattopadhyay; Shampa Chanda; Satabdi Nandi; Parikshit Bagchi; Mukti Kant Nayak; Oishee Chakrabarti; Nobumichi Kobayashi; Mamta Chawla-Sarkar

Background: Rotaviral nonstructural protein 4 (NSP4) disrupts Ca2+ ion homeostasis by translocating to the endoplasmic reticulum. Results: In this study, we show translocation of NSP4 to mitochondria, dissipation of mitochondrial potential, and initiation of apoptosis, which NSP1 counteracts during early infection. Conclusion: NSP4 and NSP1 regulate apoptosis during infection. Significance: Study signifies modulation of cellular survival and apoptotic machinery by rotavirus for their own benefit. Viruses have evolved to encode multifunctional proteins to control the intricate cellular signaling pathways by using very few viral proteins. Rotavirus is known to express six nonstructural and six structural proteins. Among them, NSP4 is the enterotoxin, known to disrupt cellular Ca2+ homeostasis by translocating to endoplasmic reticulum. In this study, we have observed translocation of NSP4 to mitochondria resulting in dissipation of mitochondrial membrane potential during virus infection and NSP4 overexpression. Furthermore, transfection of the N- and C-terminal truncated NSP4 mutants followed by analyzing NSP4 localization by immunofluorescence microscopy identified the 61–83-amino acid region as the shortest mitochondrial targeting signal. NSP4 exerts its proapoptotic effect by interacting with mitochondrial proteins adenine nucleotide translocator and voltage-dependent anion channel, resulting in dissipation of mitochondrial potential, release of cytochrome c from mitochondria, and caspase activation. During early infection, apoptosis activation by NSP4 was inhibited by the activation of cellular survival pathways (PI3K/AKT), because PI3K inhibitor results in early induction of apoptosis. However, in the presence of both PI3K inhibitor and NSP4 siRNA, apoptosis was delayed suggesting that the early apoptotic signal is initiated by NSP4 expression. This proapoptotic function of NSP4 is balanced by another virus-encoded protein, NSP1, which is implicated in PI3K/AKT activation because overexpression of both NSP4 and NSP1 in cells resulted in reduced apoptosis compared with only NSP4-expressing cells. Overall, this study reports on the mechanism by which enterotoxin NSP4 exerts cytotoxicity and the mechanism by which virus counteracts it at the early stage for efficient infection.


Journal of Biological Chemistry | 2011

Active Participation of Cellular Chaperone Hsp90 in Regulating the Function of Rotavirus Nonstructural Protein 3 (NSP3)

Dipanjan Dutta; Shiladitya Chattopadhyay; Parikshit Bagchi; Umesh Chandra Halder; Satabdi Nandi; Anupam Mukherjee; Nobumichi Kobayashi; Koki Taniguchi; Mamta Chawla-Sarkar

Heat shock protein 90 (Hsp90) has been reported to positively regulate rotavirus replication by modulating virus induced PI3K/Akt and NFκB activation. Here, we report the active association of Hsp90 in the folding and stabilization of rotavirus nonstructural protein 3 (NSP3). In pCD-NSP3-transfected cells, treatment with Hsp90 inhibitor (17-N,N-dimethylethylenediamine-geldanamycin (17DMAG)) resulted in the proteasomal degradation of NSP3. Sequence analysis and deletion mutations revealed that the region spanning amino acids 225–258 within the C-terminal eIF4G-binding domain of NSP3 is a putative Hsp90 binding region. Co-immunoprecipitation and mammalian two-hybrid experiments revealed direct interaction of the C-terminal 12-kDa domain of Hsp90 (C90) with residues 225–258 of NSP3. NSP3-Hsp90 interaction is important for the formation of functionally active mature NSP3, because full-length NSP3 in the presence of the Hsp90 inhibitor or NSP3 lacking the amino acid 225–258 region did not show NSP3 dimers following in vitro coupled transcription-translation followed by chase. Disruption of residues 225–258 within NSP3 also resulted in poor RNA binding and eIF4G binding activity. In addition, inhibition of Hsp90 by 17DMAG resulted in reduced nuclear translocation of poly(A)-binding protein and translation of viral proteins. These results highlight the crucial role of Hsp90 chaperone in the regulation of assembly and functionality of a viral protein during the virus replication and propagation in host cells.


PLOS Pathogens | 2015

A Non-enveloped Virus Hijacks Host Disaggregation Machinery to Translocate across the Endoplasmic Reticulum Membrane

Madhu Sudhan Ravindran; Parikshit Bagchi; Takamasa Inoue; Billy Tsai

Mammalian cytosolic Hsp110 family, in concert with the Hsc70:J-protein complex, functions as a disaggregation machinery to rectify protein misfolding problems. Here we uncover a novel role of this machinery in driving membrane translocation during viral entry. The non-enveloped virus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a critical infection step. Combining biochemical, cell-based, and imaging approaches, we find that the Hsp110 family member Hsp105 associates with the ER membrane J-protein B14. Here Hsp105 cooperates with Hsc70 and extracts the membrane-penetrating SV40 into the cytosol, potentially by disassembling the membrane-embedded virus. Hence the energy provided by the Hsc70-dependent Hsp105 disaggregation machinery can be harnessed to catalyze a membrane translocation event.


Virology | 2013

Rotavirus NSP1 inhibits interferon induced non-canonical NFκB activation by interacting with TNF receptor associated factor 2.

Parikshit Bagchi; Rahul Bhowmick; Satabdi Nandi; Mukti Kant Nayak; Mamta Chawla-Sarkar

TNF receptor associated factor 2 (TRAF2) plays a very important role in cellular innate immune as well as inflammatory responses. Previous studies have reported TRAF2 mediated regulation of TNF and Interferon (IFN) induced canonical and non-canonical activation of NFκB. In this study, we show that rotavirus NSP1 targets TRAF2 to regulate IFN induced non-canonical NFκB activation. Here we found that rotavirus Non-Structural Protein-1 (NSP1) interacts with TRAF2 and degrades it in a proteasome dependent manner. C-terminal part of NSP1 was sufficient for interacting with TRAF2 but it alone could not degrade TRAF2. This inhibition of interferon mediated non-canonical NFκB activation by NSP1 may modulate inflammatory cytokine production after rotavirus infection to help the virus propagation.


Journal of Virology | 2015

The Endoplasmic Reticulum Membrane J Protein C18 Executes a Distinct Role in Promoting Simian Virus 40 Membrane Penetration

Parikshit Bagchi; Christopher Paul Walczak; Billy Tsai

ABSTRACT The nonenveloped simian virus 40 (SV40) hijacks the three endoplasmic reticulum (ER) membrane-bound J proteins B12, B14, and C18 to escape from the ER into the cytosol en route to successful infection. How C18 controls SV40 ER-to-cytosol membrane penetration is the least understood of these processes. We previously found that SV40 triggers B12 and B14 to reorganize into discrete puncta in the ER membrane called foci, structures postulated to represent the cytosol entry site (C. P. Walczak, M. S. Ravindran, T. Inoue, and B. Tsai, PLoS Pathog 10:e1004007, 2014). We now find that SV40 also recruits C18 to the virus-induced B12/B14 foci. Importantly, the C18 foci harbor membrane penetration-competent SV40, further implicating this structure as the membrane penetration site. Consistent with this, a mutant SV40 that cannot penetrate the ER membrane and promote infection fails to induce C18 foci. C18 also regulates the recruitment of B12/B14 into the foci. In contrast to B14, C18s cytosolic Hsc70-binding J domain, but not the lumenal domain, is essential for its targeting to the foci; this J domain likewise is necessary to support SV40 infection. Knockdown-rescue experiments reveal that C18 executes a role that is not redundant with those of B12/B14 during SV40 infection. Collectively, our data illuminate C18s contribution to SV40 ER membrane penetration, strengthening the idea that SV40-triggered foci are critical for cytosol entry. IMPORTANCE Polyomaviruses (PyVs) cause devastating human diseases, particularly in immunocompromised patients. As this virus family continues to be a significant human pathogen, clarifying the molecular basis of their cellular entry pathway remains a high priority. To infect cells, PyV traffics from the cell surface to the ER, where it penetrates the ER membrane to reach the cytosol. In the cytosol, the virus moves to the nucleus to cause infection. ER-to-cytosol membrane penetration is a critical yet mysterious infection step. In this study, we clarify the role of an ER membrane protein called C18 in mobilizing the simian PyV SV40, a PyV archetype, from the ER into the cytosol. Our findings also support the hypothesis that SV40 induces the formation of punctate structures in the ER membrane, called foci, that serve as the portal for cytosol entry of the virus.


Nature Reviews Microbiology | 2016

Opportunistic intruders: how viruses orchestrate ER functions to infect cells

Madhu Sudhan Ravindran; Parikshit Bagchi; Corey Nathaniel Cunningham; Billy Tsai

Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co-opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus–ER interactions has become available, these insights may lead to the development of crucial therapeutic agents.


Journal of Virology | 2013

Molecular Mechanism behind Rotavirus NSP1-Mediated PI3 Kinase Activation: Interaction between NSP1 and the p85 Subunit of PI3 Kinase

Parikshit Bagchi; Satabdi Nandi; Mukti Kant Nayak; Mamta Chawla-Sarkar

ABSTRACT Our previous study had reported on the interaction of rotavirus NSP1 with cellular phosphoinositide 3-kinase (PI3K) during activation of the PI3K pathway (P. Bagchi et al., J. Virol. 84:6834–6845, 2010). In this study, we have analyzed the molecular mechanism behind this interaction. Results showed that this interaction is direct and that both α and β isomers of the PI3K regulatory subunit p85 and full-length NSP1 are important for this interaction, which results in efficient activation of the PI3K/Akt pathway during rotavirus infection.

Collaboration


Dive into the Parikshit Bagchi's collaboration.

Top Co-Authors

Avatar

Mukti Kant Nayak

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Shiladitya Chattopadhyay

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Billy Tsai

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Dipanjan Dutta

Rosalind Franklin University of Medicine and Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koki Taniguchi

Fujita Health University

View shared research outputs
Top Co-Authors

Avatar

Satoshi Komoto

Fujita Health University

View shared research outputs
Researchain Logo
Decentralizing Knowledge