Takamasa Inoue
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takamasa Inoue.
Mbio | 2011
Edward C. Goodwin; Alex Lipovsky; Takamasa Inoue; Thomas G. Magaldi; Anne P. B. Edwards; K. E. Y. Van Goor; Adrienne W. Paton; James C. Paton; Walter J. Atwood; Billy Tsai; Daniel DiMaio
ABSTRACT Simian virus 40 (SV40) is a nonenveloped DNA virus that traffics through the endoplasmic reticulum (ER) en route to the nucleus, but the mechanisms of capsid disassembly and ER exit are poorly understood. We conducted an unbiased RNA interference screen to identify cellular genes required for SV40 infection. SV40 infection was specifically inhibited by up to 50-fold by knockdown of four different DNAJ molecular cochaperones or by inhibition of BiP, the Hsp70 partner of DNAJB11. These proteins were not required for the initiation of capsid disassembly, but knockdown markedly inhibited SV40 exit from the ER. In addition, BiP formed a complex with SV40 capsids in the ER in a DNAJB11-dependent fashion. These experiments identify five new cellular proteins required for SV40 infection and suggest that the binding of BiP to the capsid is required for ER exit. Further studies of these proteins will provide insight into the molecular mechanisms of polyomavirus infection and ER function. IMPORTANCE The polyomaviruses, including simian virus 40 (SV40), are important human pathogens and model systems for exploring the general features of virus replication and cell biology. We used a genetic system to interrogate the role of cellular genes in SV40 infection. Based on the results of this unbiased genetic screen and analysis of proteins related to the strongest hit from the screen, we identified five new cellular proteins required for the entry of SV40 into cells. These proteins physically associate with SV40 in the endoplasmic reticulum (ER) during virus entry and are required for exit of the partially disassembled virus from this organelle. These results demonstrate that the polyomaviruses have coopted an ER-localized protein quality control process to initiate disassembly and transit through the cell on their way to the nuclear site of virus replication. The polyomaviruses, including simian virus 40 (SV40), are important human pathogens and model systems for exploring the general features of virus replication and cell biology. We used a genetic system to interrogate the role of cellular genes in SV40 infection. Based on the results of this unbiased genetic screen and analysis of proteins related to the strongest hit from the screen, we identified five new cellular proteins required for the entry of SV40 into cells. These proteins physically associate with SV40 in the endoplasmic reticulum (ER) during virus entry and are required for exit of the partially disassembled virus from this organelle. These results demonstrate that the polyomaviruses have coopted an ER-localized protein quality control process to initiate disassembly and transit through the cell on their way to the nuclear site of virus replication.
PLOS Pathogens | 2011
Takamasa Inoue; Billy Tsai
Non-enveloped viruses penetrate host membranes to infect cells. A cell-based assay was used to probe the endoplasmic reticulum (ER)-to-cytosol membrane transport of the non-enveloped SV40. We found that, upon ER arrival, SV40 is released into the lumen and undergoes sequential disulfide bond disruptions to reach the cytosol. However, despite these ER-dependent conformational changes, SV40 crosses the ER membrane as a large and intact particle consisting of the VP1 coat, the internal components VP2, VP3, and the genome. This large particle subsequently disassembles in the cytosol. Mutant virus and inhibitor studies demonstrate VP3 and likely the viral genome, as well as cellular proteasome, control ER-to-cytosol transport. Our results identify the sequence of events, as well as virus and host components, that regulate ER membrane penetration. They also suggest that the ER membrane supports passage of a large particle, potentially through either a sizeable protein-conducting channel or the lipid bilayer.
PLOS Pathogens | 2014
Christopher P. Walczak; Madhu Sudhan Ravindran; Takamasa Inoue; Billy Tsai
Nonenveloped viruses undergo conformational changes that enable them to bind to, disrupt, and penetrate a biological membrane leading to successful infection. We assessed whether cytosolic factors play any role in the endoplasmic reticulum (ER) membrane penetration of the nonenveloped SV40. We find the cytosolic SGTA-Hsc70 complex interacts with the ER transmembrane J-proteins DnaJB14 (B14) and DnaJB12 (B12), two cellular factors previously implicated in SV40 infection. SGTA binds directly to SV40 and completes ER membrane penetration. During ER-to-cytosol transport of SV40, SGTA disengages from B14 and B12. Concomitant with this, SV40 triggers B14 and B12 to reorganize into discrete foci within the ER membrane. B14 must retain its ability to form foci and interact with SGTA-Hsc70 to promote SV40 infection. Our results identify a novel role for a cytosolic chaperone in the membrane penetration of a nonenveloped virus and raise the possibility that the SV40-induced foci represent cytosol entry sites.
Cold Spring Harbor Perspectives in Biology | 2013
Takamasa Inoue; Billy Tsai
To cause infection, a virus enters a host cell, replicates, and assembles, with the resulting new viral progeny typically released into the extracellular environment to initiate a new infection round. Virus entry, replication, and assembly are dynamic and coordinated processes that require precise interactions with host components, often within and surrounding a defined subcellular compartment. Accumulating evidence pinpoints the endoplasmic reticulum (ER) as a crucial organelle supporting viral entry, replication, and assembly. This review focuses on the molecular mechanism by which different viruses co-opt the ER to accomplish these crucial infection steps. Certain bacterial toxins also hijack the ER for entry. An interdisciplinary approach, using rigorous biochemical and cell biological assays coupled with advanced microscopy strategies, will push to the next level our understanding of the virus-ER interaction during infection.
Molecular Biology of the Cell | 2013
Jeffrey M. Williams; Takamasa Inoue; Lindsey Banks; Billy Tsai
ERdj5 triggers BiP to bind to cholera toxin in the endoplasmic reticulum, targeting the toxin to the Hrd1 E3 ubiquitin ligase complex for retrotranslocation.
Annual Review of Microbiology | 2011
Takamasa Inoue; Paul A. Moore; Billy Tsai
Many viruses and toxins disassemble to enter host cells and cause disease. These conformational changes must be orchestrated temporally and spatially during entry to avoid premature disassembly leading to nonproductive pathways. Although viruses and toxins are evolutionarily distinct toxic agents, emerging findings in their respective fields have revealed that the cellular locations supporting disassembly, the host factors co-opted during disassembly, the nature of the conformational changes, and the physiological function served by disassembly are strikingly conserved. Here, we examine some of the shared disassembly principles observed in model viruses and toxins. Where appropriate, we also underscore their differences. Our major intention is to draw together the fields of viral and toxin cell entry by using lessons gleaned from each field to inform and benefit one another.
Molecular Biology of the Cell | 2013
Kaleena M. Bernardi; Jeffrey M. Williams; Takamasa Inoue; Aric Schultz; Billy Tsai
Although cholera toxin is a nonubiquitinated substrate that undergoes retro-translocation to the cytosol, this study identifies a deubiquitinase that controls toxin retro-translocation.
PLOS Pathogens | 2015
Madhu Sudhan Ravindran; Parikshit Bagchi; Takamasa Inoue; Billy Tsai
Mammalian cytosolic Hsp110 family, in concert with the Hsc70:J-protein complex, functions as a disaggregation machinery to rectify protein misfolding problems. Here we uncover a novel role of this machinery in driving membrane translocation during viral entry. The non-enveloped virus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a critical infection step. Combining biochemical, cell-based, and imaging approaches, we find that the Hsp110 family member Hsp105 associates with the ER membrane J-protein B14. Here Hsp105 cooperates with Hsc70 and extracts the membrane-penetrating SV40 into the cytosol, potentially by disassembling the membrane-embedded virus. Hence the energy provided by the Hsc70-dependent Hsp105 disaggregation machinery can be harnessed to catalyze a membrane translocation event.
Journal of Virology | 2015
Takamasa Inoue; Billy Tsai
ABSTRACT The nonenveloped simian polyomavirus (PyV) simian virus 40 (SV40) hijacks the endoplasmic reticulum (ER) quality control machinery to penetrate the ER membrane and reach the cytosol, a critical infection step. During entry, SV40 traffics to the ER, where host-induced conformational changes render the virus hydrophobic. The hydrophobic virus binds and integrates into the ER lipid bilayer to initiate membrane penetration. However, prior to membrane transport, the hydrophobic SV40 recruits the ER-resident Hsp70 BiP, which holds the virus in a transport-competent state until it is ready to cross the ER membrane. Here we probed how BiP disengages from SV40 to enable the virus to penetrate the ER membrane. We found that nucleotide exchange factor (NEF) Grp170 induces nucleotide exchange of BiP and releases SV40 from BiP. Importantly, this reaction promotes SV40 ER-to-cytosol transport and infection. The human BK PyV also relies on Grp170 for successful infection. Interestingly, SV40 mobilizes a pool of Grp170 into discrete puncta in the ER called foci. These foci, postulated to represent the ER membrane penetration site, harbor ER components, including BiP, known to facilitate viral ER-to-cytosol transport. Our results thus identify a nucleotide exchange activity essential for catalyzing the most proximal event before ER membrane penetration of PyVs. IMPORTANCE PyVs are known to cause debilitating human diseases. During entry, this virus family, including monkey SV40 and human BK PyV, hijacks ER protein quality control machinery to breach the ER membrane and access the cytosol, a decisive infection step. In this study, we pinpointed an ER-resident factor that executes a crucial role in promoting ER-to-cytosol membrane penetration of PyVs. Identifying a host factor that facilitates entry of the PyV family thus provides additional therapeutic targets to combat PyV-induced diseases.
Journal of Virology | 2015
Takamasa Inoue; Annie M. Dosey; Jeffrey F. Herbstman; Madhu Sudhan Ravindran; Georgios Skiniotis; Billy Tsai
ABSTRACT The nonenveloped polyomavirus (PyV) simian virus 40 (SV40) traffics from the cell surface to the endoplasmic reticulum (ER), where it penetrates the ER membrane to reach the cytosol before mobilizing into the nucleus to cause infection. Prior to ER membrane penetration, ER lumenal factors impart structural rearrangements to the virus, generating a translocation-competent virion capable of crossing the ER membrane. Here we identify ERdj5 as an ER enzyme that reduces SV40s disulfide bonds, a reaction important for its ER membrane transport and infection. ERdj5 also mediates human BK PyV infection. This enzyme cooperates with protein disulfide isomerase (PDI), a redox chaperone previously implicated in the unfolding of SV40, to fully stimulate membrane penetration. Negative-stain electron microscopy of ER-localized SV40 suggests that ERdj5 and PDI impart structural rearrangements to the virus. These conformational changes enable SV40 to engage BAP31, an ER membrane protein essential for supporting membrane penetration of the virus. Uncoupling of SV40 from BAP31 traps the virus in ER subdomains called foci, which likely serve as depots from where SV40 gains access to the cytosol. Our study thus pinpoints two ER lumenal factors that coordinately prime SV40 for ER membrane translocation and establishes a functional connection between lumenal and membrane events driving this process. IMPORTANCE PyVs are established etiologic agents of many debilitating human diseases, especially in immunocompromised individuals. To infect cells at the cellular level, this virus family must penetrate the host ER membrane to reach the cytosol, a critical entry step. In this report, we identify two ER lumenal factors that prepare the virus for ER membrane translocation and connect these lumenal events with events on the ER membrane. Pinpointing cellular components necessary for supporting PyV infection should lead to rational therapeutic strategies for preventing and treating PyV-related diseases.