Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Parisa Asghari is active.

Publication


Featured researches published by Parisa Asghari.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation–contraction coupling, and cardiac arrhythmias

Nagesh Chopra; Tao Yang; Parisa Asghari; Edwin D.W. Moore; Sabine Huke; Brandy L. Akin; Robert A. Cattolica; Claudio F. Perez; Thinn Hlaing; Barbara Knollmann-Ritschel; Larry R. Jones; Isaac N. Pessah; Paul D. Allen; Clara Franzini-Armstrong; Björn C. Knollmann

Heart muscle excitation–contraction (E-C) coupling is governed by Ca2+ release units (CRUs) whereby Ca2+ influx via L-type Ca2+ channels (Cav1.2) triggers Ca2+ release from juxtaposed Ca2+ release channels (RyR2) located in junctional sarcoplasmic reticulum (jSR). Although studies suggest that the jSR protein triadin anchors cardiac calsequestrin (Casq2) to RyR2, its contribution to E-C coupling remains unclear. Here, we identify the role of triadin using mice with ablation of the Trdn gene (Trdn−/−). The structure and protein composition of the cardiac CRU is significantly altered in Trdn−/− hearts. jSR proteins (RyR2, Casq2, junctin, and junctophilin 1 and 2) are significantly reduced in Trdn−/− hearts, whereas Cav1.2 and SERCA2a remain unchanged. Electron microscopy shows fragmentation and an overall 50% reduction in the contacts between jSR and T-tubules. Immunolabeling experiments show reduced colocalization of Cav1.2 with RyR2 and substantial Casq2 labeling outside of the jSR in Trdn−/− myocytes. CRU function is impaired in Trdn−/− myocytes, with reduced SR Ca2+ release and impaired negative feedback of SR Ca2+ release on Cav1.2 Ca2+ currents (ICa). Uninhibited Ca2+ influx via ICa likely contributes to Ca2+ overload and results in spontaneous SR Ca2+ releases upon β-adrenergic receptor stimulation with isoproterenol in Trdn−/− myocytes, and ventricular arrhythmias in Trdn−/− mice. We conclude that triadin is critically important for maintaining the structural and functional integrity of the cardiac CRU; triadin loss and the resulting alterations in CRU structure and protein composition impairs E-C coupling and renders hearts susceptible to ventricular arrhythmias.


Biophysical Journal | 2009

Axial tubules of rat ventricular myocytes form multiple junctions with the sarcoplasmic reticulum.

Parisa Asghari; Meredith N. Schulson; David R.L. Scriven; Garnet Martens; Edwin D.W. Moore

Ryanodine receptors (RyRs) are located primarily on the junctional sarcoplasmic reticulum (SR), adjacent to the transverse tubules and on the cell surface near the Z-lines, but some RyRs are on junctional SR adjacent to axial tubules. Neither the size of the axial junctions nor the numbers of RyRs that they contain have been determined. RyRs may also be located on the corbular SR and on the free or network SR. Because determining and quantifying the distribution of RyRs is critical for both understanding and modeling calcium dynamics, we investigated the distribution of RyRs in healthy adult rat ventricular myocytes, using electron microscopy, electron tomography, and immunofluorescence. We found RyRs in only three regions: in couplons on the surface and on transverse tubules, both of which are near the Z-line, and in junctions on most of the axial tubules--axial junctions. The axial junctions averaged 510 nm in length, but they occasionally spanned an entire sarcomere. Numerical analysis showed that they contain as much as 19% of a cells RyRs. Tomographic analysis confirmed the axial junctions architecture, which is indistinguishable from junctions on transverse tubules or on the surface, and revealed a complexly structured tubule whose lumen was only 26 nm at its narrowest point. RyRs on axial junctions colocalize with Ca(v)1.2, suggesting that they play a role in excitation-contraction coupling.


Developmental Biology | 2010

Integrin-mediated adhesion maintains sarcomeric integrity

Alexander D. Perkins; Stephanie J. Ellis; Parisa Asghari; Arash Shamsian; Edwin D.W. Moore; Guy Tanentzapf

Integrin-mediated adhesion to the ECM is essential for normal development of animal tissues. During muscle development, integrins provide the structural stability required to construct such a highly tensile, force generating tissue. Mutations that disrupt integrin-mediated adhesion in skeletal muscles give rise to a myopathy in humans and mice. To determine if this is due to defects in formation or defects in maintenance of muscle tissue, we used an inducible, targeted RNAi based approach to disrupt integrin-mediated adhesion in fully formed adult fly muscles. A decrease in integrin-mediated adhesion in adult muscles led to a progressive loss of muscle function due to a failure to maintain normal sarcomeric cytoarchitecture. This defect was due to a gradual, age dependent disorganization of the sarcomeric actin, Z-line, and M-line. Electron microscopic analysis showed that reduction in integrin-mediated adhesion resulted in detachment of actin filaments from the Z-lines, separation of the Z-lines from the membrane, and eventually to disintegration of the Z-lines. Our results show that integrin-mediated adhesion is essential for maintaining sarcomeric integrity and illustrate that the seemingly stable adhesive contacts underlying sarcomeric architecture are inherently dynamic.


Cardiovascular Research | 2013

Microarchitecture of the Dyad

David R.L. Scriven; Parisa Asghari; Edwin D.W. Moore

This review highlights recent and ongoing discoveries that are transforming the previously held view of dyad structure and function. New data show that dyads vary greatly in both structure and in their associated molecules. Dyads can contain varying numbers of type 2 ryanodine receptor (RYR2) clusters that range in size from one to hundreds of tetramers and they can adopt numerous orientations other than the expected checkerboard. The association of Ca(v)1.2 with RYR2, which defines the couplon, is not absolute, leading to a number of scenarios such as dyads without couplons and those in which only a fraction of the clusters are in couplons. Different dyads also vary in the transporters and exchangers with which they are associated producing functional differences that amplify their structural diversity. The essential role of proteins, such as junctophilin-2, calsequestrin, triadin, and junctin that maintain both the functional and structural integrity of the dyad have recently been elucidated giving a new mechanistic understanding of heart diseases, such as arrhythmias, hypertension, failure, and sudden cardiac death.


Biophysical Journal | 2010

Analysis of Cav1.2 and Ryanodine Receptor Clusters in Rat Ventricular Myocytes

David R.L. Scriven; Parisa Asghari; Meredith N. Schulson; Edwin D.W. Moore

We analyzed the distribution of ryanodine receptor (RyR) and Cav1.2 clusters in adult rat ventricular myocytes using three-dimensional object-based colocalization metrics. We found that ∼75% of the Cav1.2 clusters and 65% of the RyR clusters were within couplons, and both were roughly two and a half times larger than their extradyadic counterparts. Within a couplon, Cav1.2 was concentrated near the center of the underlying RyR cluster and accounted for ∼67% of its size. These data, together with previous findings from binding studies, enable us to estimate that a couplon contains 74 RyR tetramers and 10 copies of the α-subunit of Cav1.2. Extradyadic clusters of RyR contained ∼30 tetramers, whereas the extradyadic Cav1.2 clusters contained, on average, only four channels. Between 80% and 85% of both RyR and Cav1.2 molecules are within couplons. RyR clusters were in the closest proximity, with a median nearest-neighbor distance of 552 nm; comparable values for Cav1.2 clusters and couplons were 619 nm and 735 nm, respectively. Extradyadic RyR clusters were significantly closer together (624 nm) and closer to the couplons (674 nm) than the couplons were to each other. In contrast, the extradyadic clusters of Cav1.2 showed no preferential localization and were broadly distributed. These results provide a wealth of morphometric data that are essential for understanding intracellular Ca2+ regulation and modeling Ca2+ dynamics.


Cardiovascular Research | 2012

Cardiac ryanodine receptors control heart rate and rhythmicity in adult mice

Michael J. Bround; Parisa Asghari; Rich Wambolt; Lubos Bohunek; Claire Smits; Marjolaine Philit; Timothy J. Kieffer; Edward G. Lakatta; Kenneth R. Boheler; Edwin D.W. Moore; Michael F. Allard; James D. Johnson

AIMS The molecular mechanisms controlling heart function and rhythmicity are incompletely understood. While it is widely accepted that the type 2 ryanodine receptor (Ryr2) is the major Ca(2+) release channel in excitation-contraction coupling, the role of these channels in setting a consistent beating rate remains controversial. Gain-of-function RYR2 mutations in humans and genetically engineered mouse models are known to cause Ca(2+) leak, arrhythmias, and sudden cardiac death. Embryonic stem-cell derived cardiomyocytes lacking Ryr2 display slower beating rates, but no supporting in vivo evidence has been presented. The aim of the present study was to test the hypothesis that RYR2 loss-of-function would reduce heart rate and rhythmicity in vivo. METHODS AND RESULTS We generated inducible, tissue-specific Ryr2 knockout mice with acute ∼50% loss of RYR2 protein in the heart but not in other tissues. Echocardiography, working heart perfusion, and in vivo ECG telemetry demonstrated that deletion of Ryr2 was sufficient to cause bradycardia and arrhythmia. Our results also show that cardiac Ryr2 knockout mice exhibit functional and structural hallmarks of heart failure, including sudden cardiac death. CONCLUSION These results illustrate that the RYR2 channel plays an essential role in pacing heart rate. Moreover, we find that RYR2 loss-of-function can lead to fatal arrhythmias typically associated with gain-of-function mutations. Given that RYR2 levels can be reduced in pathological conditions, including heart failure and diabetic cardiomyopathy, we predict that RYR2 loss contributes to disease-associated bradycardia, arrhythmia, and sudden death.


Circulation Research | 2014

Nonuniform and Variable Arrangements of Ryanodine Receptors Within Mammalian Ventricular Couplons

Parisa Asghari; David R.L. Scriven; Shubhayan Sanatani; Sanjiv K. Gandhi; Andrew Campbell; Edwin D.W. Moore

Rationale: Single-tilt tomograms of the dyads in rat ventricular myocytes indicated that type 2 ryanodine receptors (RYR2s) were not positioned in a well-ordered array. Furthermore, the orientation and packing strategy of purified type 1 ryanodine receptors in lipid bilayers is determined by the free Mg2+ concentration. These observations led us to test the hypothesis that RYR2s within the mammalian dyad have multiple and complex arrangements. Objectives: To determine the arrangement of RYR2 tetramers in the dyads of mammalian cardiomyocytes and the effects of physiologically and pathologically relevant factors on this arrangement. Methods and Results: We used dual-tilt electron tomography to produce en-face views of dyads, enabling a direct examination of RYR2 distribution and arrangement. Rat hearts fixed in situ; isolated rat cardiomyocytes permeabilized, incubated with 1 mmol/L Mg2+, and then fixed; and sections of human ventricle, all showed that the tetramer packing within a dyad was nonuniform containing a mix of checkerboard and side-by-side arrangements, as well as isolated tetramers. Both phosphorylation and 0.1 mmol/L Mg2+ moved the tetramers into a predominantly checkerboard configuration, whereas the 4 mmol/L Mg2+ induced a dense side-by-side arrangement. These changes occurred within 10 minutes of application of the stimuli. Conclusions: The arrangement of RYR2 tetramers within the mammalian dyad is neither uniform nor static. We hypothesize that this is characteristic of the dyad in vivo and may provide a mechanism for modulating the open probabilities of the individual tetramers.


Protoplasma | 2012

The structure and functioning of the couplon in the mammalian cardiomyocyte.

Parisa Asghari; David R.L. Scriven; Jeremy G. Hoskins; Nicola Fameli; Cornelis van Breemen; Edwin D.W. Moore

The couplons of the cardiomyocyte form nanospaces within the cell that place the L-type calcium channel (Cav1.2), situated on the plasmalemma, in opposition to the type 2 ryanodine receptor (RyR2), situated on the sarcoplasmic reticulum. These two molecules, which form the basis of excitation–contraction coupling, are separated by a very limited space, which allows a few Ca2+ ions passing through Cav1.2 to activate the RyR2 at concentration levels that would be deleterious to the whole cell. The limited space also allows Ca2+ inactivation of Cav1.2. We have found that not all couplons are the same and that their properties are likely determined by their molecular partners which, in turn, determine their excitability. In particular, there are a class of couplons that lie outside the RyR2-Cav1.2 dyad; in this case, the RyR2 is close to caveolin-3 rather than Cav1.2. These extra-dyadic couplons are probably controlled by the multitude of molecules associated with caveolin-3 and may modulate contractile force under situations such as stress. It has long been assumed that like the skeletal muscle, the RyR2 in the couplon are arranged in a structured array with the RyR2 interacting with each other via domain 6 of the RyR2 molecule. This arrangement was thought to provide local control of RyR2 excitability. Using 3D electron tomography of the couplon, we show that the RyR2 in the couplon do not form an ordered pattern, but are scattered throughout it. Relatively few are in a checkerboard pattern—many RyR2 sit edge-to-edge, a configuration which might preclude their controlling each others excitability. The discovery of this structure makes many models of cardiac couplon function moot and is a current avenue of further research


Biology of Reproduction | 2017

Ca2+ signaling machinery is present at intercellular junctions and structures associated with junction turnover in rat Sertoli cells†

Kevin Lyon; Arlo Adams; Matthew Piva; Parisa Asghari; Edwin D.W. Moore; A. Wayne Vogl

Abstract The endoplasmic reticulum (ER) in Sertoli cells is a component of unique adhesion junctions (ectoplasmic specializations—ESs) and is closely associated with structures termed tubulobulbar complexes (TBCs) that internalize intercellular junctions during sperm release and during the translocation of spermatocytes through the blood-testis barrier. A role for the ER in Ca2+ regulation at ESs and TBCs has been suspected, but evidence for this function has proved elusive. Using electron microscopy, we define two new ER-plasma membrane (PM) contact sites in apical Sertoli cell processes. One of these sites occurs at TBCs where flattened lamellar cisternae of ER envelope the swollen bulb regions of the complexes, and where the gap between adjacent membranes is 12 nm. The other is at the periphery of apical processes where the gap between membranes is 13–14 nm. Using immunolocalization at the light and electron microscopic levels, we demonstrate that Ca2+ regulatory machinery is present at the ESs attached to spermatid heads, and at ER-PM contacts. Sarco/endoplasmic reticulum Ca2+-ATPase 2 (ATP2A2, SERCA2) is present at ESs; transient receptor potential channel subfamily M member 6 (TRPM6), Homer1 (HOMER1), and inositol 1,4,5-trisphosphate receptor (ITPR, IP3R) are present at ER-PM contacts associated with TBC bulbs; and stromal interacting molecule 1 (STIM1), Orai1 (ORAI1), and ATP2A2 are present at the ER-PM contacts around the margins of Sertoli cell apical processes. In Sertoli cells, the molecular machinery associated with ER generated Ca2+ fluxes is present in regions and structures directly related to junction remodeling—a process necessary for sperm release. Summary Sentence Calcium may be a regulator of junction turnover in rat testis.


Biophysical Journal | 2005

Caveolin-3 is adjacent to a group of extradyadic ryanodine receptors

David R.L. Scriven; Agnieszka M. Klimek; Parisa Asghari; Karl D. Bellve; Edwin D.W. Moore

Collaboration


Dive into the Parisa Asghari's collaboration.

Top Co-Authors

Avatar

Edwin D.W. Moore

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

David R.L. Scriven

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

A. Wayne Vogl

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

James D. Johnson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Lubos Bohunek

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Meredith N. Schulson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Michael F. Allard

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Michael J. Bround

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Rich Wambolt

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge