Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Parviz Minoo is active.

Publication


Featured researches published by Parviz Minoo.


Pediatric Research | 1996

Undetectable interleukin (IL)-10 and persistent IL-8 expression early in hyaline membrane disease: a possible developmental basis for the predisposition to chronic lung inflammation in preterm newborns.

Craig A. Jones; Rowena Cayabyab; Kenny Y.C. Kwong; Cynthia Stotts; Betty Wong; Hasnah Hamdan; Parviz Minoo; Robert A. deLemos

We are interested in determining whether premature birth alters expression of counterregulatory cytokines which modulate lung inflammation. Production of proinflammatory cytokines tumor necrosis factor α, IL-1β, and IL-8 is regulated in part by the antiinflammatory cytokine IL-10. For preterm newborns with hyaline membrane disease, deficiencies in the ability of lung macrophages to express antiinflammatory cytokines may predispose to chronic lung inflammation. We compared the expression of pro- and antiinflammatory cytokines at the mRNA and protein level in the lungs of preterm and term newborns with acute respiratory failure from hyaline membrane disease or meconium aspiration syndrome. Four sequential bronchoalveolar lavage (BAL) samples were obtained during the first 96 h of life from all patients. All patients rapidly developed an influx of neutrophils and macrophages. Over time, cell populations in both groups became relatively enriched with macrophages. The expression of proinflammatory cytokine mRNA and/or protein was present in all samples from both patient groups. In contrast, IL-10 mRNA was undetectable in most of the cell samples from preterm infants and present in the majority of cell samples from term infants. IL-10 concentrations were undetectable in lavage fluid from preterm infants with higher levels in a few of the BAL samples from term infants. These studies demonstrate that1) IL-10 mRNA and protein expression by lung inflammatory cells is related to gestational age and 2) during the first 96 h of life neutrophil cell counts and IL-8 expression decrease in BAL from term infants, but remain unchanged in BAL samples from preterm infants.


Molecular and Cellular Biology | 2007

The Human Tim/Tipin Complex Coordinates an Intra-S Checkpoint Response to UV That Slows Replication Fork Displacement

Keziban Unsal-Kacmaz; Paul D. Chastain; Ping Ping Qu; Parviz Minoo; Marila Cordeiro-Stone; Aziz Sancar; William K. Kaufmann

ABSTRACT UV-induced DNA damage stalls DNA replication forks and activates the intra-S checkpoint to inhibit replicon initiation. In response to stalled replication forks, ATR phosphorylates and activates the transducer kinase Chk1 through interactions with the mediator proteins TopBP1, Claspin, and Timeless (Tim). Murine Tim recently was shown to form a complex with Tim-interacting protein (Tipin), and a similar complex was shown to exist in human cells. Knockdown of Tipin using small interfering RNA reduced the expression of Tim and reversed the intra-S checkpoint response to UVC. Tipin interacted with replication protein A (RPA) and RPA-coated DNA, and RPA promoted the loading of Tipin onto RPA-free DNA. Immunofluorescence analysis of spread DNA fibers showed that treating HeLa cells with 2.5 J/m2 UVC not only inhibited the initiation of new replicons but also reduced the rate of chain elongation at active replication forks. The depletion of Tim and Tipin reversed the UV-induced inhibition of replicon initiation but affected the rate of DNA synthesis at replication forks in different ways. In undamaged cells depleted of Tim, the apparent rate of replication fork progression was 52% of the control. In contrast, Tipin depletion had little or no effect on fork progression in unirradiated cells but significantly attenuated the UV-induced inhibition of DNA chain elongation. Together, these findings indicate that the Tim-Tipin complex mediates the UV-induced intra-S checkpoint, Tim is needed to maintain DNA replication fork movement in the absence of damage, Tipin interacts with RPA on DNA and, in UV-damaged cells, Tipin slows DNA chain elongation in active replicons.


Stem Cells | 2008

Human Amniotic Fluid Stem Cells Can Integrate and Differentiate into Epithelial Lung Lineages

Gianni Carraro; Laura Perin; Sargis Sedrakyan; Stefano Giuliani; Caterina Tiozzo; Jooeun Lee; Gianluca Turcatel; Stijn De Langhe; Barbara Driscoll; Saverio Bellusci; Parviz Minoo; Anthony Atala; Roger E. De Filippo; David Warburton

A new source of stem cells has recently been isolated from amniotic fluid; these amniotic fluid stem cells have significant potential for regenerative medicine. These cells are multipotent, showing the ability to differentiate into cell types from each embryonic germ layer. We investigated the ability of human amniotic fluid stem cells (hAFSC) to integrate into murine lung and to differentiate into pulmonary lineages after injury. Using microinjection into cultured mouse embryonic lungs, hAFSC can integrate into the epithelium and express the early human differentiation marker thyroid transcription factor 1 (TTF1). In adult nude mice, following hyperoxia injury, tail vein‐injected hAFSC localized in the distal lung and expressed both TTF1 and the type II pneumocyte marker surfactant protein C. Specific damage of Clara cells through naphthalene injury produced integration and differentiation of hAFSC at the bronchioalveolar and bronchial positions with expression of the specific Clara cell 10‐kDa protein. These results illustrate the plasticity of hAFSC to respond in different ways to different types of lung damage by expressing specific alveolar versus bronchiolar epithelial cell lineage markers, depending on the type of injury to recipient lung.


Journal of Biological Chemistry | 2012

Interactions Between β-Catenin and Transforming Growth Factor-β Signaling Pathways Mediate Epithelial-Mesenchymal Transition and Are Dependent on the Transcriptional Co-activator cAMP-response Element-binding Protein (CREB)-binding Protein (CBP)

Beiyun Zhou; Yixin Liu; Michael Kahn; David K. Ann; Arum Han; Hongjun Wang; Cu Nguyen; Per Flodby; Qian Zhong; Manda S. Krishnaveni; Janice M. Liebler; Parviz Minoo; Edward D. Crandall; Zea Borok

Background: Direct evidence for molecular interdependence between transforming growth factor-β (TGF-β) and Wnt pathways in mesenchymal gene regulation during epithelial-mesenchymal transition (EMT) is limited. Results: TGF-β induction of α-smooth muscle actin (α-SMA) involves ternary complex formation among Smad3, β-catenin, and CBP. Conclusion: TGF-β and β-catenin/CBP-dependent pathways coordinately regulate α-SMA induction. Significance: Inhibition of β-catenin/CBP-dependent effects of TGF-β suggests a novel therapeutic approach to EMT/fibrosis. Interactions between transforming growth factor-β (TGF-β) and Wnt are crucial to many biological processes, although specific targets, rationale for divergent outcomes (differentiation versus block of epithelial proliferation versus epithelial-mesenchymal transition (EMT)) and precise mechanisms in many cases remain unknown. We investigated β-catenin-dependent and transforming growth factor-β1 (TGF-β1) interactions in pulmonary alveolar epithelial cells (AEC) in the context of EMT and pulmonary fibrosis. We previously demonstrated that ICG-001, a small molecule specific inhibitor of the β-catenin/CBP (but not β-catenin/p300) interaction, ameliorates and reverses pulmonary fibrosis and inhibits TGF-β1-mediated α-smooth muscle actin (α-SMA) and collagen induction in AEC. We now demonstrate that TGF-β1 induces LEF/TCF TOPFLASH reporter activation and nuclear β-catenin accumulation, while LiCl augments TGF-β-induced α-SMA expression, further confirming co-operation between β-catenin- and TGF-β-dependent signaling pathways. Inhibition and knockdown of Smad3, knockdown of β-catenin and overexpression of ICAT abrogated effects of TGF-β1 on α-SMA transcription/expression, indicating a requirement for β-catenin in these Smad3-dependent effects. Following TGF-β treatment, co-immunoprecipitation demonstrated direct interaction between endogenous Smad3 and β-catenin, while chromatin immunoprecipitation (ChIP)-re-ChIP identified spatial and temporal regulation of α-SMA via complex formation among Smad3, β-catenin, and CBP. ICG-001 inhibited α-SMA expression/transcription in response to TGF-β as well as α-SMA promoter occupancy by β-catenin and CBP, demonstrating a previously unknown requisite TGF-β1/β-catenin/CBP-mediated pro-EMT signaling pathway. Clinical relevance was shown by β-catenin/Smad3 co-localization and CBP expression in AEC of IPF patients. These findings suggest a new therapeutic approach to pulmonary fibrosis by specifically uncoupling CBP/catenin-dependent signaling downstream of TGF-β.


Molecular and Cellular Biology | 2001

claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing.

Tomoaki Niimi; Kunio Nagashima; Jerrold M. Ward; Parviz Minoo; Drazen B. Zimonjic; Nicholas C. Popescu; Shioko Kimura

ABSTRACT T/EBP/NKX2.1, a member of the NKX family of homeodomain-containing transcription factors, regulates the expression of a number of genes in lung and thyroid. Here we describe the isolation and characterization of a novel target gene, termed claudin-18, that is down-regulated in the lungs of T/ebp/Nkx2.1-null mouse embryos. The gene product exhibits an amino acid sequence similar to those of the claudin multigene family of proteins that constitute tight junction strands in epithelial cells. The gene was localized by fluorescence in situ hybridization to mouse chromosome 9 at region 9E3-F1 and to human chromosome 3 at region 3q21–23. Theclaudin-18 gene has two promoters, each with its own unique exon 1 that is spliced to common exons 2 through 5. Alternative usage of these promoters leads to production of lung and stomach-specific transcripts. The downstream lung-specific promoter contains two T/EBP/NKX2.1 binding sites responsible for trans activation of the gene by T/EBP/NKX2.1 in lung cells. Only claudin-18was down-regulated in T/ebp/Nkx2.1-null embryo lungs among 11 claudin transcripts examined. Furthermore, theclaudin-18 transcript has an alternative 12-bp insertion derived from the 5′ end of intron 4, which produces a C-terminally truncated isoform in lung and stomach. Immunohistochemistry demonstrated complete membrane localization of claudin-18 with small focal dots in the lung and stomach epithelial cells. Immunogold electron microscopy analysis revealed that claudin-18 is concentrated at the cell-cell borders of epithelial cells. These unique features suggest a potentially important role for claudin-18 in the structure and function of tight junctions in lung and stomach.


Journal of Clinical Investigation | 2011

Epithelium-specific deletion of TGF-β receptor type II protects mice from bleomycin-induced pulmonary fibrosis

Min Li; Manda S. Krishnaveni; Changgong Li; Beiyun Zhou; Yiming Xing; Agnes Banfalvi; Aimin Li; Vincent Lombardi; Omid Akbari; Zea Borok; Parviz Minoo

Idiopathic pulmonary fibrosis (IPF) is a chronic fibroproliferative pulmonary disorder for which there are currently no treatments. Although the etiology of IPF is unknown, dysregulated TGF-β signaling has been implicated in its pathogenesis. Recent studies also suggest a central role for abnormal epithelial repair. In this study, we sought to elucidate the function of epithelial TGF-β signaling via TGF-β receptor II (TβRII) and its contribution to fibrosis by generating mice in which TβRII was specifically inactivated in mouse lung epithelium. These mice, which are referred to herein as TβRIINkx2.1-cre mice, were used to determine the impact of TβRII inactivation on (a) embryonic lung morphogenesis in vivo; and (b) the epithelial cell response to TGF-β signaling in vitro and in a bleomycin-induced, TGF-β-mediated mouse model of pulmonary fibrosis. Although postnatally viable with no discernible abnormalities in lung morphogenesis and epithelial cell differentiation, TβRIINkx2.1-cre mice developed emphysema, suggesting a requirement for epithelial TβRII in alveolar homeostasis. Absence of TβRII increased phosphorylation of Smad2 and decreased, but did not entirely block, phosphorylation of Smad3 in response to endogenous/physiologic TGF-β. However, TβRIINkx2.1-cre mice exhibited increased survival and resistance to bleomycin-induced pulmonary fibrosis. To our knowledge, these findings are the first to demonstrate a specific role for TGF-β signaling in the lung epithelium in the pathogenesis of pulmonary fibrosis.


Developmental Dynamics | 2000

Inhibition of distal lung morphogenesis in Nkx2.1(−/−) embryos

Bingbing Yuan; Changgong Li; Shioko Kimura; Robert T. Engelhardt; Bradley R. Smith; Parviz Minoo

In vitro and in vivo results are consistent with a critical role for NKX2.1, an epithelial homeodomain transcription factor in lung morphogenesis. Nkx2.1 null mutant embryos die at birth due to respiratory insufficiency caused by profoundly abnormal lungs. However, the precise role of NKX2.1 in the multistep process of lung structural morphogenesis and differentiation of various pulmonary cell types remains unknown. In the current study, we tested the hypothesis that the mutant lungs do not undergo branching morphogenesis beyond the formation of the mainstem bronchi and therefore consist solely of dilated tracheobronchial structures. To test this hypothesis, we determined the spatial and temporal expression pattern of a number of extracellular matrix (ECM) proteins and their cellular receptors, including α‐integrins, laminin, and collagen type IV. Although laminin is expressed in the mutant Nkx2.1(−/−) lungs, expression of α‐integrins and collagen type IV is significantly reduced or absent. In addition, examination of regionally specific expression of differentially spliced Vegf (vascular endothelial growth factor) transcripts, clearly indicates that the epithelial phenotype of the Nkx2.1(−/−) lungs is similar to the tracheo‐bronchial epithelium. In contrast to wild‐type lungs in which both Vegf1 and Vegf3 are developmentally expressed, Nkx2.1(−/−) lungs are characterized by predominant expression of Vegf1 and reduced or absent Vegf3. A similar pattern of Vegf expression is also observed in isolated tracheo‐bronchial tissue. The sum of these findings suggest that at least two separate pathways may exist in embryonic lung morphogenesis: proximal lung morphogenesis is Nkx2.1 independent, while distal lung morphogenesis appears to be strictly dependent on the wild‐type activity of Nkx2.1. Dev Dyn;217:180–190.


Journal of Histochemistry and Cytochemistry | 1996

Embryonic mouse lung epithelial progenitor cells co-express immunohistochemical markers of diverse mature cell lineages.

Carol Wuenschell; Mary E. Sunday; Gurmukh Singh; Parviz Minoo; Harold C. Slavkin; David Warburton

Developmental expression of marker genes representative of different mature cell types can be used to study differentiation of cell lineages. We used immunohistochemistry to study expression in developing mouse lung of calcitonin gene-related peptide (CGRP), Clara cell 10-KD protein (CC10), and surfactant protein-A (SP-A), markers that are differentially expressed in neuroendocrine cells, Clara cells, and Type II alveolar cells. Two distinct developmental phases were revealed. The earlier phase (embryonic days 13-15; E13-E15) was characterized by CGRP, CC10, and SP-A immunostaining in all epithelial cells of the distal airways, with the three patterns being virtually identical in adjacent sections. The later phase (E16-E18) was characterized by emergence of staining of the differentiated cell types. These expression patterns were recapitulated in serumless organ culture, demonstrating that information necessary to generate both phases of gene expression is present within the lung analage by E11. We conclude that CGRP, CC10, and SP-A are co-expressed in most or all cells of the distal lung epithelium at E13-E15 and later become restricted to different cell lineages. This transient expression in progenitor cells of gene products characteristic of diverse differentiated cell types may reflect an underlying mechanism of gene regulation.


American Journal of Respiratory Cell and Molecular Biology | 2011

Role of Endoplasmic Reticulum Stress in Epithelial–Mesenchymal Transition of Alveolar Epithelial Cells: Effects of Misfolded Surfactant Protein

Qian Zhong; Beiyun Zhou; David K. Ann; Parviz Minoo; Yixin Liu; Agnes Banfalvi; Manda S. Krishnaveni; Mickael Dubourd; Lucas DeMaio; Brigham C. Willis; Kwang-Jin Kim; Roland M. duBois; Edward D. Crandall; Michael F. Beers; Zea Borok

Endoplasmic reticulum (ER) stress has been implicated in alveolar epithelial type II (AT2) cell apoptosis in idiopathic pulmonary fibrosis. We hypothesized that ER stress (either chemically induced or due to accumulation of misfolded proteins) is also associated with epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs). ER stress inducers, thapsigargin (TG) or tunicamycin (TN), increased expression of ER chaperone, Grp78, and spliced X-box binding protein 1, decreased epithelial markers, E-cadherin and zonula occludens-1 (ZO-1), increased the myofibroblast marker, α-smooth muscle actin (α-SMA), and induced fibroblast-like morphology in both primary AECs and the AT2 cell line, RLE-6TN, consistent with EMT. Overexpression of the surfactant protein (SP)-C BRICHOS mutant SP-C(ΔExon4) in A549 cells increased Grp78 and α-SMA and disrupted ZO-1 distribution, and, in primary AECs, SP-C(ΔExon4) induced fibroblastic-like morphology, decreased ZO-1 and E-cadherin and increased α-SMA, mechanistically linking ER stress associated with mutant SP to fibrosis through EMT. Whereas EMT was evident at lower concentrations of TG or TN, higher concentrations caused apoptosis. The Src inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4]pyramidine) (PP2), abrogated EMT associated with TN or TG in primary AECs, whereas overexpression of SP-C(ΔExon4) increased Src phosphorylation, suggesting a common mechanism. Furthermore, increased Grp78 immunoreactivity was observed in AT2 cells of mice after bleomycin injury, supporting a role for ER stress in epithelial abnormalities in fibrosis in vivo. These results demonstrate that ER stress induces EMT in AECs, at least in part through Src-dependent pathways, suggesting a novel role for ER stress in fibroblast accumulation in pulmonary fibrosis.


Biochimie | 1999

Thyroid-specific enhancer-binding protein/thyroid transcription factor 1 is not required for the initial specification of the thyroid and lung primordia.

Shioko Kimura; Jerrold M. Ward; Parviz Minoo

Targeted disruption of the homeobox gene T/ebp (Ttf1) in mice results in ablation of the thyroid and pituitary, and severe deformities in development of the lung and hypothalamus. T/ebp is expressed in the thyroid, lung, and ventral forebrain during normal embryogenesis. Examination of thyroid development in T/ebp homozygous null mutant embryos revealed that the thyroid rudiment is initially formed but is eliminated through apoptosis. Absence of T/EBP expression in the lung primordium does not activate apoptosis since a lung tissue, albeit dysmorphic, is nevertheless formed in T/ebp-/- embryos. These results demonstrate that T/EBP is not required for the initial specification of thyroid or lung primordia, but is absolutely essential for the development and morphogenesis of these organs.

Collaboration


Dive into the Parviz Minoo's collaboration.

Top Co-Authors

Avatar

Changgong Li

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Zea Borok

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Edward D. Crandall

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Yiming Xing

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beiyun Zhou

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Aimin Li

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Per Flodby

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

David Warburton

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Min Li

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge