Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beiyun Zhou is active.

Publication


Featured researches published by Beiyun Zhou.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Inhibition of Wnt/β-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis

William R. Henderson; Emil Y. Chi; Xin Ye; Cu Nguyen; Ying Tzang Tien; Beiyun Zhou; Zea Borok; Darryl A. Knight; Michael Kahn

Idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia is a ravaging condition of progressive lung scarring and destruction. Anti-inflammatory therapies including corticosteroids have limited efficacy in this ultimately fatal disorder. An important unmet need is to identify new agents that interact with key molecular pathways involved in the pathogenesis of pulmonary fibrosis to prevent progression or reverse fibrosis in these patients. Because aberrant activation of the Wnt/β-catenin signaling cascade occurs in lungs of patients with IPF, we have targeted this pathway for intervention in pulmonary fibrosis using ICG-001, a small molecule that specifically inhibits T-cell factor/β-catenin transcription in a cyclic AMP response-element binding protein binding protein (CBP)-dependent fashion. ICG-001 selectively blocks the β-catenin/CBP interaction without interfering with the β-catenin/p300 interaction. We report here that ICG-001 (5 mg/kg per day) significantly inhibits β-catenin signaling and attenuates bleomycin-induced lung fibrosis in mice, while concurrently preserving the epithelium. Administration of ICG-001 concurrent with bleomycin prevents fibrosis, and late administration is able to reverse established fibrosis and significantly improve survival. Because no effective treatment for IPF exists, selective inhibition of Wnt/β-catenin-dependent transcription suggests a potential unique therapeutic approach for pulmonary fibrosis.


Journal of Biological Chemistry | 2012

Interactions Between β-Catenin and Transforming Growth Factor-β Signaling Pathways Mediate Epithelial-Mesenchymal Transition and Are Dependent on the Transcriptional Co-activator cAMP-response Element-binding Protein (CREB)-binding Protein (CBP)

Beiyun Zhou; Yixin Liu; Michael Kahn; David K. Ann; Arum Han; Hongjun Wang; Cu Nguyen; Per Flodby; Qian Zhong; Manda S. Krishnaveni; Janice M. Liebler; Parviz Minoo; Edward D. Crandall; Zea Borok

Background: Direct evidence for molecular interdependence between transforming growth factor-β (TGF-β) and Wnt pathways in mesenchymal gene regulation during epithelial-mesenchymal transition (EMT) is limited. Results: TGF-β induction of α-smooth muscle actin (α-SMA) involves ternary complex formation among Smad3, β-catenin, and CBP. Conclusion: TGF-β and β-catenin/CBP-dependent pathways coordinately regulate α-SMA induction. Significance: Inhibition of β-catenin/CBP-dependent effects of TGF-β suggests a novel therapeutic approach to EMT/fibrosis. Interactions between transforming growth factor-β (TGF-β) and Wnt are crucial to many biological processes, although specific targets, rationale for divergent outcomes (differentiation versus block of epithelial proliferation versus epithelial-mesenchymal transition (EMT)) and precise mechanisms in many cases remain unknown. We investigated β-catenin-dependent and transforming growth factor-β1 (TGF-β1) interactions in pulmonary alveolar epithelial cells (AEC) in the context of EMT and pulmonary fibrosis. We previously demonstrated that ICG-001, a small molecule specific inhibitor of the β-catenin/CBP (but not β-catenin/p300) interaction, ameliorates and reverses pulmonary fibrosis and inhibits TGF-β1-mediated α-smooth muscle actin (α-SMA) and collagen induction in AEC. We now demonstrate that TGF-β1 induces LEF/TCF TOPFLASH reporter activation and nuclear β-catenin accumulation, while LiCl augments TGF-β-induced α-SMA expression, further confirming co-operation between β-catenin- and TGF-β-dependent signaling pathways. Inhibition and knockdown of Smad3, knockdown of β-catenin and overexpression of ICAT abrogated effects of TGF-β1 on α-SMA transcription/expression, indicating a requirement for β-catenin in these Smad3-dependent effects. Following TGF-β treatment, co-immunoprecipitation demonstrated direct interaction between endogenous Smad3 and β-catenin, while chromatin immunoprecipitation (ChIP)-re-ChIP identified spatial and temporal regulation of α-SMA via complex formation among Smad3, β-catenin, and CBP. ICG-001 inhibited α-SMA expression/transcription in response to TGF-β as well as α-SMA promoter occupancy by β-catenin and CBP, demonstrating a previously unknown requisite TGF-β1/β-catenin/CBP-mediated pro-EMT signaling pathway. Clinical relevance was shown by β-catenin/Smad3 co-localization and CBP expression in AEC of IPF patients. These findings suggest a new therapeutic approach to pulmonary fibrosis by specifically uncoupling CBP/catenin-dependent signaling downstream of TGF-β.


Journal of Clinical Investigation | 2011

Epithelium-specific deletion of TGF-β receptor type II protects mice from bleomycin-induced pulmonary fibrosis

Min Li; Manda S. Krishnaveni; Changgong Li; Beiyun Zhou; Yiming Xing; Agnes Banfalvi; Aimin Li; Vincent Lombardi; Omid Akbari; Zea Borok; Parviz Minoo

Idiopathic pulmonary fibrosis (IPF) is a chronic fibroproliferative pulmonary disorder for which there are currently no treatments. Although the etiology of IPF is unknown, dysregulated TGF-β signaling has been implicated in its pathogenesis. Recent studies also suggest a central role for abnormal epithelial repair. In this study, we sought to elucidate the function of epithelial TGF-β signaling via TGF-β receptor II (TβRII) and its contribution to fibrosis by generating mice in which TβRII was specifically inactivated in mouse lung epithelium. These mice, which are referred to herein as TβRIINkx2.1-cre mice, were used to determine the impact of TβRII inactivation on (a) embryonic lung morphogenesis in vivo; and (b) the epithelial cell response to TGF-β signaling in vitro and in a bleomycin-induced, TGF-β-mediated mouse model of pulmonary fibrosis. Although postnatally viable with no discernible abnormalities in lung morphogenesis and epithelial cell differentiation, TβRIINkx2.1-cre mice developed emphysema, suggesting a requirement for epithelial TβRII in alveolar homeostasis. Absence of TβRII increased phosphorylation of Smad2 and decreased, but did not entirely block, phosphorylation of Smad3 in response to endogenous/physiologic TGF-β. However, TβRIINkx2.1-cre mice exhibited increased survival and resistance to bleomycin-induced pulmonary fibrosis. To our knowledge, these findings are the first to demonstrate a specific role for TGF-β signaling in the lung epithelium in the pathogenesis of pulmonary fibrosis.


American Journal of Respiratory Cell and Molecular Biology | 2011

Role of Endoplasmic Reticulum Stress in Epithelial–Mesenchymal Transition of Alveolar Epithelial Cells: Effects of Misfolded Surfactant Protein

Qian Zhong; Beiyun Zhou; David K. Ann; Parviz Minoo; Yixin Liu; Agnes Banfalvi; Manda S. Krishnaveni; Mickael Dubourd; Lucas DeMaio; Brigham C. Willis; Kwang-Jin Kim; Roland M. duBois; Edward D. Crandall; Michael F. Beers; Zea Borok

Endoplasmic reticulum (ER) stress has been implicated in alveolar epithelial type II (AT2) cell apoptosis in idiopathic pulmonary fibrosis. We hypothesized that ER stress (either chemically induced or due to accumulation of misfolded proteins) is also associated with epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs). ER stress inducers, thapsigargin (TG) or tunicamycin (TN), increased expression of ER chaperone, Grp78, and spliced X-box binding protein 1, decreased epithelial markers, E-cadherin and zonula occludens-1 (ZO-1), increased the myofibroblast marker, α-smooth muscle actin (α-SMA), and induced fibroblast-like morphology in both primary AECs and the AT2 cell line, RLE-6TN, consistent with EMT. Overexpression of the surfactant protein (SP)-C BRICHOS mutant SP-C(ΔExon4) in A549 cells increased Grp78 and α-SMA and disrupted ZO-1 distribution, and, in primary AECs, SP-C(ΔExon4) induced fibroblastic-like morphology, decreased ZO-1 and E-cadherin and increased α-SMA, mechanistically linking ER stress associated with mutant SP to fibrosis through EMT. Whereas EMT was evident at lower concentrations of TG or TN, higher concentrations caused apoptosis. The Src inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4]pyramidine) (PP2), abrogated EMT associated with TN or TG in primary AECs, whereas overexpression of SP-C(ΔExon4) increased Src phosphorylation, suggesting a common mechanism. Furthermore, increased Grp78 immunoreactivity was observed in AT2 cells of mice after bleomycin injury, supporting a role for ER stress in epithelial abnormalities in fibrosis in vivo. These results demonstrate that ER stress induces EMT in AECs, at least in part through Src-dependent pathways, suggesting a novel role for ER stress in fibroblast accumulation in pulmonary fibrosis.


Nature Communications | 2014

Characterizing the genetic basis of methylome diversity in histologically normal human lung tissue

Jianxin Shi; Crystal N. Marconett; Jubao Duan; Paula L. Hyland; Peng Li; Zhaoming Wang; William Wheeler; Beiyun Zhou; Mihaela Campan; Diane S. Lee; Jing Huang; Weiyin Zhou; Timothy J. Triche; Laufey Amundadottir; Andrew Warner; Amy Hutchinson; Po Han Chen; Brian Chung; Angela C. Pesatori; Dario Consonni; Pier Alberto Bertazzi; Andrew W. Bergen; Mathew Freedman; Kimberly D. Siegmund; Benjamin P. Berman; Zea Borok; Nilanjan Chatterjee; Margaret A. Tucker; Neil E. Caporaso; Stephen J. Chanock

The genetic regulation of the human epigenome is not fully appreciated. Here we describe the effects of genetic variants on the DNA methylome in human lung based on methylation-quantitative trait loci (meQTL) analyses. We report 34,304 cis- and 585 trans-meQTLs, a genetic-epigenetic interaction of surprising magnitude, including a regulatory hotspot. These findings are replicated in both breast and kidney tissues and show distinct patterns: cis-meQTLs mostly localize to CpG sites outside of genes, promoters, and CpG islands (CGIs), while trans-meQTLs are over-represented in promoter CGIs. meQTL SNPs are enriched in CTCF binding sites, DNaseI hypersensitivity regions and histone marks. Importantly, 4 of the 5 established lung cancer risk loci in European ancestry are cis-meQTLs and, in aggregate, cis-meQTLs are enriched for lung cancer risk in a genome-wide analysis of 11,587 subjects. Thus, inherited genetic variation may affect lung carcinogenesis by regulating the human methylome.


American Journal of Respiratory Cell and Molecular Biology | 2010

Directed expression of Cre in alveolar epithelial type 1 cells.

Per Flodby; Zea Borok; Agnes Banfalvi; Beiyun Zhou; Danping Gao; Parviz Minoo; David K. Ann; Edward E. Morrisey; Edward D. Crandall

Pulmonary alveolar epithelium is comprised of two morphologically and functionally distinct cell types, alveolar epithelial type (AT) I and AT2 cells. Genetically modified mice with cell-specific Cre/loxP-mediated knockouts of relevant genes in each respective cell type would be useful to help elucidate the relative contributions of AT1 versus AT2 cells to alveolar homeostasis. Cre has previously been efficiently expressed in AT2 cells in mouse lung with the surfactant protein (SP)-C promoter; however, no transgenic mouse expressing Cre in AT1 cells has so far been available. To develop an AT1 cell-specific transgenic Cre mouse, we generated a knockin of a Cre-IRES-DsRed cassette into exon 1 of the endogenous aquaporin 5 (Aqp5) gene, a gene expressed specifically in AT1 cells in the distal lung epithelium, resulting in the mouse line, Aqp5-Cre-IRES-DsRed (ACID). Endogenous Aqp5 and transgenic Cre in ACID mice showed a very similar pattern of tissue distribution by RT-PCR. To analyze Cre activity, ACID was crossed to two Cre reporter strains, R26LacZ and mT/mG. Double-transgenic offspring demonstrated reporter gene expression in a very high fraction of AT1 cells in the distal lung, whereas AT2 cells were negative. As expected, variable reporter expression was detected in several other tissues where endogenous Aqp5 is expressed (e.g., submandibular salivary gland and stomach). ACID mice should be of major utility in analyzing the functional contribution of AT1 cells to alveolar epithelial properties in vivo with Cre/loxP-mediated gene deletion technology.


Journal of Virology | 2001

Vesicular Stomatitis Virus G-Pseudotyped Lentivirus Vectors Mediate Efficient Apical Transduction of Polarized Quiescent Primary Alveolar Epithelial Cells

Zea Borok; Jens Erik Harboe-Schmidt; Steven L. Brody; Yingjian You; Beiyun Zhou; Xian Li; Paula M. Cannon; Kwang-Jin Kim; Edward D. Crandall; Noriyuki Kasahara

ABSTRACT We investigated the use of lentivirus vectors for gene transfer to quiescent alveolar epithelial cells. Primary rat alveolar epithelial cells (AEC) grown on plastic or as polarized monolayers on tissue culture-treated polycarbonate semipermeable supports were transduced with a replication-defective human immunodeficiency virus-based lentivirus vector pseudotyped with the vesicular stomatitis virus G (VSV-G) protein and encoding an enhanced green fluorescent protein reporter gene. Transduction efficiency, evaluated by confocal microscopy and quantified by fluorescence-activated cell sorting, was dependent on the dose of vector, ranging from 4% at a multiplicity of infection (MOI) of 0.1 to 99% at an MOI of 50 for AEC grown on plastic. At a comparable titer and MOI, transduction of these cells by a similarly pseudotyped murine leukemia virus vector was ∼30-fold less than by the lentivirus vector. Importantly, comparison of lentivirus-mediated gene transfer from the apical or basolateral surface of confluent AEC monolayers (Rt > 2 kΩ · cm2; MOI = 10) revealed efficient transduction only when VSV-G-pseudotyped lentivirus was applied apically. Furthermore, treatment with EGTA to increase access to the basolateral surface did not increase transduction of apically applied virus, indicating that transduction was primarily via the apical membrane domain. In contrast, differentiated tracheal epithelial cells were transduced by apically applied lentivirus only in the presence of EGTA and at a much lower overall efficiency (∼15-fold) than was observed for AEC. Efficient transduction of AEC from the apical cell surface supports the feasibility of using VSV-G-pseudotyped lentivirus vectors for gene transfer to the alveolar epithelium and suggests that differences exist between upper and lower airways in the polarity of available receptors for the VSV-G protein.


PLOS Genetics | 2013

Integrated transcriptomic and epigenomic analysis of primary human lung epithelial cell differentiation.

Crystal N. Marconett; Beiyun Zhou; Megan E. Rieger; Suhaida A. Selamat; Mickael Dubourd; Xiaohui Fang; Sean Lynch; Theresa Ryan Stueve; Kimberly D. Siegmund; Benjamin P. Berman; Zea Borok; Ite A. Laird-Offringa

Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation.


The Journal of Pathology | 2012

Ligand-independent transforming growth factor-β type I receptor signalling mediates type I collagen-induced epithelial-mesenchymal transition.

Lucas DeMaio; Stephen T. Buckley; Manda S. Krishnaveni; Per Flodby; Mickael Dubourd; Agnes Banfalvi; Yiming Xing; Carsten Ehrhardt; Parviz Minoo; Beiyun Zhou; Edward D. Crandall; Zea Borok

Evidence suggests epithelial–mesenchymal transition (EMT) as one potential source of fibroblasts in idiopathic pulmonary fibrosis. To assess the contribution of alveolar epithelial cell (AEC) EMT to fibroblast accumulation in vivo following lung injury and the influence of extracellular matrix on AEC phenotype in vitro, Nkx2.1‐Cre;mT/mG mice were generated in which AECs permanently express green fluorescent protein (GFP). On days 17–21 following intratracheal bleomycin administration, ∼4% of GFP‐positive epithelial‐derived cells expressed vimentin or α‐smooth muscle actin (α‐SMA). Primary AECs from Nkx2.1‐Cre;mT/mG mice cultured on laminin‐5 or fibronectin maintained an epithelial phenotype. In contrast, on type I collagen, cells of epithelial origin displayed nuclear localization of Smad3, acquired spindle‐shaped morphology, expressed α‐SMA and phospho‐Smad3, consistent with activation of the transforming growth factor‐β (TGFβ) signalling pathway and EMT. α‐SMA induction and Smad3 nuclear localization were blocked by the TGFβ type I receptor (TβRI, otherwise known as Alk5) inhibitor SB431542, while AEC derived from Nkx2.1‐Cre;Alk5


American Journal of Respiratory Cell and Molecular Biology | 2008

Foxp2 inhibits Nkx2.1-mediated transcription of SP-C via interactions with the Nkx2.1 homeodomain.

Beiyun Zhou; Qian Zhong; Parviz Minoo; Changgong Li; David K. Ann; Baruch Frenkel; Edward E. Morrisey; Edward D. Crandall; Zea Borok

^{\rm{flox/KO}}

Collaboration


Dive into the Beiyun Zhou's collaboration.

Top Co-Authors

Avatar

Zea Borok

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Edward D. Crandall

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Parviz Minoo

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Per Flodby

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Crystal N. Marconett

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

David K. Ann

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Yixin Liu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Ite A. Laird-Offringa

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Janice M. Liebler

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kwang-Jin Kim

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge