Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pascal Courtin is active.

Publication


Featured researches published by Pascal Courtin.


Journal of Biological Chemistry | 2010

Cell Surface of Lactococcus lactis Is Covered by a Protective Polysaccharide Pellicle

Marie-Pierre Chapot-Chartier; Evgeny Vinogradov; Irina Sadovskaya; Guillaume Andre; Michel-Yves Mistou; Patrick Trieu-Cuot; Sylviane Furlan; Elena Bidnenko; Pascal Courtin; Christine Péchoux; Pascal Hols; Yves F. Dufrêne; Saulius Kulakauskas

In Gram-positive bacteria, the functional role of surface polysaccharides (PS) that are not of capsular nature remains poorly understood. Here, we report the presence of a novel cell wall PS pellicle on the surface of Lactococcus lactis. Spontaneous PS-negative mutants were selected using semi-liquid growth conditions, and all mutations were mapped in a single chromosomal locus coding for PS biosynthesis. PS molecules were shown to be composed of hexasaccharide phosphate repeating units that are distinct from other bacterial PS. Using complementary atomic force and transmission electron microscopy techniques, we showed that the PS layer forms an outer pellicle surrounding the cell. Notably, we found that this cell wall layer confers a protective barrier against host phagocytosis by murine macrophages. Altogether, our results suggest that the PS pellicle could represent a new cell envelope structural component of Gram-positive bacteria.


Applied and Environmental Microbiology | 2000

Expression of a Heterologous Glutamate Dehydrogenase Gene in Lactococcus lactis Highly Improves the Conversion of Amino Acids to Aroma Compounds

Liesbeth Rijnen; Pascal Courtin; Jean-Claude Gripon; Mireille Yvon

ABSTRACT The first step of amino acid degradation in lactococci is a transamination, which requires an α-keto acid as the amino group acceptor. We have previously shown that the level of available α-keto acid in semihard cheese is the first limiting factor for conversion of amino acids to aroma compounds, since aroma formation is greatly enhanced by adding α-ketoglutarate to cheese curd. In this study we introduced a heterologous catabolic glutamate dehydrogenase (GDH) gene into Lactococcus lactis so that this organism could produce α-ketoglutarate from glutamate, which is present at high levels in cheese. Then we evaluated the impact of GDH activity on amino acid conversion in in vitro tests and in a cheese model by using radiolabeled amino acids as tracers. The GDH-producing lactococcal strain degraded amino acids without added α-ketoglutarate to the same extent that the wild-type strain degraded amino acids with added α-ketoglutarate. Interestingly, the GDH-producing lactococcal strain produced a higher proportion of carboxylic acids, which are major aroma compounds. Our results demonstrated that a GDH-producing lactococcal strain could be used instead of adding α-ketoglutarate to improve aroma development in cheese.


Microbiology | 2002

Cell-wall proteinases PrtS and PrtB have a different role in Streptococcus thermophilus/Lactobacillus bulgaricus mixed cultures in milk.

Pascal Courtin; Véronique Monnet; Françoise Rul

The manufacture of yoghurt relies on the simultaneous utilization of two starters: Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus). A protocooperation usually takes place between the two species, which often results in enhanced milk acidification and aroma formation compared to pure cultures. Cell-wall proteinases of Lactococcus lactis and lactobacilli have been shown to be essential to growth in milk in pure cultures. In this study, the role of proteinases PrtS from S. thermophilus and PrtB from Lb. bulgaricus in bacterial growth in milk was evaluated; a negative mutant for the prtS gene of S. thermophilus CNRZ 385 was constructed for this purpose. Pure cultures of S. thermophilus CNRZ 385 and its PrtS-negative mutant were made in milk as well as mixed cultures of S. thermophilus and Lb. bulgaricus: S. thermophilus CNRZ 385 or its PrtS-negative mutant was associated with several strains of Lb. bulgaricus, including a PrtB-negative strain. The pH and growth of bacterial populations of the resulting mixed cultures were followed, and the Lactobacillus strain was found to influence both the extent of the benefit of Lb. bulgaricus/S. thermophilus association on milk acidification and the magnitude of S. thermophilus population dominance at the end of fermentation. In all mixed cultures, the sequential growth of S. thermophilus then of Lb. bulgarius and finally of both bacteria was observed. Although proteinase PrtS was essential to S. thermophilus growth in milk in pure culture, it had no effect on bacterial growth and thus on the final pH of mixed cultures in the presence of PrtB. In contrast, proteinase PrtB was necessary for the growth of S. thermophilus, and its absence resulted in a higher final pH. From these results, a model of growth of both bacteria in mixed cultures in milk is proposed.


Journal of Biological Chemistry | 2011

Characterization of O-Acetylation of N-Acetylglucosamine A NOVEL STRUCTURAL VARIATION OF BACTERIAL PEPTIDOGLYCAN

Elvis Bernard; Thomas Rolain; Pascal Courtin; Alain Guillot; Philippe Langella; Pascal Hols; Marie-Pierre Chapot-Chartier

Peptidoglycan (PG) N-acetyl muramic acid (MurNAc) O-acetylation is widely spread in Gram-positive bacteria and is generally associated with resistance against lysozyme and endogenous autolysins. We report here the presence of O-acetylation on N-acetylglucosamine (GlcNAc) in Lactobacillus plantarum PG. This modification of glycan strands was never described in bacteria. Fine structural characterization of acetylated muropeptides released from L. plantarum PG demonstrated that both MurNAc and GlcNAc are O-acetylated in this species. These two PG post-modifications rely on two dedicated O-acetyltransferase encoding genes, named oatA and oatB, respectively. By analyzing the resistance to cell wall hydrolysis of mutant strains, we showed that GlcNAc O-acetylation inhibits N-acetylglucosaminidase Acm2, the major L. plantarum autolysin. In this bacterial species, inactivation of oatA, encoding MurNAc O-acetyltransferase, resulted in marked sensitivity to lysozyme. Moreover, MurNAc over-O-acetylation was shown to activate autolysis through the putative N-acetylmuramoyl-l-alanine amidase LytH enzyme. Our data indicate that in L. plantarum, two different O-acetyltransferases play original and antagonistic roles in the modulation of the activity of endogenous autolysins.


Journal of Biological Chemistry | 2011

Clostridium difficile Has an Original Peptidoglycan Structure with a High Level of N-Acetylglucosamine Deacetylation and Mainly 3-3 Cross-links

Johann Peltier; Pascal Courtin; Imane El Meouche; Ludovic Lemée; Marie-Pierre Chapot-Chartier; Jean-Louis Pons

The structure of the vegetative cell wall peptidoglycan of Clostridium difficile was determined by analysis of its constituent muropeptides with a combination of reverse-phase high pressure liquid chromatography separation of muropeptides, amino acid analysis, mass spectrometry and tandem mass spectrometry. The structures assigned to 36 muropeptides evidenced several original features in C. difficile vegetative cell peptidoglycan. First, it is characterized by a strikingly high level of N-acetylglucosamine deacetylation. In addition, the majority of dimers (around 75%) contains A2pm3 → A2pm3 (A2pm, 2,6-diaminopimelic acid) cross-links and only a minority of the more classical Ala4 → A2pm3 cross-links. Moreover, a significant amount of muropeptides contains a modified tetrapeptide stem ending in Gly instead of d-Ala4. Two l,d-transpeptidases homologues encoding genes present in the genome of C. difficile 630 and named ldtcd1 and ldtcd2, were inactivated. The inactivation of either ldtcd1 or ldtcd2 significantly decreased the abundance of 3-3 cross-links, leading to a marked decrease of peptidoglycan reticulation and demonstrating that both ldtcd1-and ldtcd2-encoded proteins have a redundant l,d-transpeptidase activity. The contribution of 3-3 cross-links to peptidoglycan synthesis increased in the presence of ampicillin, indicating that this drug does not inhibit the l,d-transpeptidation pathway in C. difficile.


Infection and Immunity | 2007

Enterococcus faecalis Constitutes an Unusual Bacterial Model in Lysozyme Resistance

Laurent Hébert; Pascal Courtin; Riccardo Torelli; Maurizio Sanguinetti; Marie-Pierre Chapot-Chartier; Yanick Auffray; Abdellah Benachour

ABSTRACT Lysozyme is an important and widespread compound of the host constitutive defense system, and it is assumed that Enterococcus faecalis is one of the few bacteria that are almost completely lysozyme resistant. On the basis of the sequence analysis of the whole genome of E. faecalis V583 strain, we identified two genes that are potentially involved in lysozyme resistance, EF_0783 and EF_1843. Protein products of these two genes share significant homology with Staphylococcus aureus peptidoglycan O-acetyltransferase (OatA) and Streptococcus pneumoniae N-acetylglucosamine deacetylase (PgdA), respectively. In order to determine whether EF_0783 and EF_1843 are involved in lysozyme resistance, we constructed their corresponding mutants and a double mutant. The ΔEF_0783 mutant and ΔEF_0783 ΔEF_1843 double mutant were shown to be more sensitive to lysozyme than the parental E. faecalis JH2-2 strain and ΔEF_1843 mutant were. However, compared to other bacteria, such as Listeria monocytogenes or S. pneumoniae, the tolerance of ΔEF_0783 and ΔEF_0783 ΔEF_1843 mutants towards lysozyme remains very high. Peptidoglycan structure analysis showed that EF_0783 modifies the peptidoglycan by O acetylation of N-acetyl muramic acid, while the EF_1843 deletion has no obvious effect on peptidoglycan structure under the same conditions. Moreover, the EF_0783 and EF_1843 deletions seem to significantly affect the ability of E. faecalis to survive within murine macrophages. In all, while EF_0783 is currently involved in the lysozyme resistance of E. faecalis, peptidoglycan O acetylation and de-N-acetylation are not the main mechanisms conferring high levels of lysozyme resistance to E. faecalis.


International Dairy Journal | 2003

Lactococcal aminotransferases AraT and BcaT are key enzymes for the formation of aroma compounds from amino acids in cheese

Liesbeth Rijnen; Mireille Yvon; Richard van Kranenburg; Pascal Courtin; Annette Verheul; Emilie Chambellon; Gerrit Smit

Amino acid catabolism plays a major role in cheese aroma development. Previously, we showed that the lactococcal aminotransferases AraT and BcaT initiate the conversion of aromatic amino acids, branched-chain amino acids and methionine to aroma compounds. In this study, we evaluated the importance of these two enzymes in the formation of aroma compounds in a cheese model by using single araT and bcaT mutants and a double araT/bcaT mutant. We confirmed that addition of α-ketoglutarate, a co-substrate of aminotransferases, stimulates the conversion of amino acids to aroma compounds in cheese. The results demonstrated that AraT and BcaT are essential for conversion of aromatic and branched-chain amino acids to aroma compounds by Lactococcus lactis in the cheese model and that they also play a major role in the formation of volatile sulphur compounds from methionine. However, another pathway or another aminotransferase appears also to be weakly involved in the formation of these sulphur compounds.


Journal of Biological Chemistry | 2013

The Lactococcal Phages Tuc2009 and TP901-1 Incorporate Two Alternate Forms of Their Tail Fiber into Their Virions for Infection Specialization

Stephen R. Stockdale; Jennifer Mahony; Pascal Courtin; Marie-Pierre Chapot-Chartier; Jan-Peter van Pijkeren; Robert A. Britton; Horst Neve; Knut J. Heller; Bashir Aideh; Finn K. Vogensen; Douwe van Sinderen

Background: Siphoviridae virions often possess lytic domains facilitating host-penetration. Results: Tuc2009 and TP901-1 virions may contain full-length or truncated tail fibers, possessing or lacking a lytic domain, respectively. Conclusion: Phages with a lytic domain infect stationary phase cells better, whereas truncated derivatives have higher adsorption efficiencies. Significance: The heterogeneous phage population serves to most effectively infect bacteria where levels of cell wall cross-linkage differ. Lactococcal phages Tuc2009 and TP901-1 possess a conserved tail fiber called a tail-associated lysin (referred to as Tal2009 for Tuc2009, and Tal901-1 for TP901-1), suspended from their tail tips that projects a peptidoglycan hydrolase domain toward a potential host bacterium. Tal2009 and Tal901-1 can undergo proteolytic processing mid-protein at the glycine-rich sequence GG(S/N)SGGG, removing their C-terminal structural lysin. In this study, we show that the peptidoglycan hydrolase of these Tal proteins is an M23 peptidase that exhibits d-Ala-d-Asp endopeptidase activity and that this activity is required for efficient infection of stationary phase cells. Interestingly, the observed proteolytic processing of Tal2009 and Tal901-1 facilitates increased host adsorption efficiencies of the resulting phages. This represents, to the best of our knowledge, the first example of tail fiber proteolytic processing that results in a heterogeneous population of two phage types. Phages that possess a full-length tail fiber, or a truncated derivative, are better adapted to efficiently infect cells with an extensively cross-linked cell wall or infect with increased host-adsorption efficiencies, respectively.


Journal of Bacteriology | 2007

Control of the Transcription of a Short Gene Encoding a Cyclic Peptide in Streptococcus thermophilus: a New Quorum-Sensing System?

Mariam Ibrahim; Alain Guillot; Françoise Wessner; Florence Algaron; Colette Besset; Pascal Courtin; Rozenn Gardan; Véronique Monnet

Gram-positive bacteria secrete a variety of peptides that are often subjected to posttranslational modifications and that are either antimicrobials or pheromones involved in bacterial communication. Our objective was to identify peptides secreted by Streptococcus thermophilus, a nonpathogenic bacterium widely used in dairy technology in association with other bacteria, and to understand their potential roles in cell-cell communication. Using reverse-phase liquid chromatography, mass spectrometry, and Edman sequencing, we analyzed the culture supernatants of three S. thermophilus strains (CNRZ1066, LMG18311, and LMD-9) grown in a medium containing no peptides. We identified several peptides in the culture supernatants, some of them found with the three strains while others were specific to the LMD-9 strain. We focused our study on a new modified peptide secreted by S. thermophilus LMD-9 and designated Pep1357C. This peptide contains 9 amino acids and lost 2 Da in a posttranslational modification, most probably a dehydrogenation, leading to a linkage between the Lys2 and Trp6 residues. Production of Pep1357C and transcription of its encoding gene depend on both the medium composition and the growth phase. Furthermore, we demonstrated that transcription of the gene coding for Pep1357C is drastically decreased in mutants inactivated for the synthesis of a short hydrophobic peptide, a transcriptional regulator, or the oligopeptide transport system. Taken together, our results led us to deduce that the transcription of the Pep1357C-encoding gene is controlled by a new quorum-sensing system.


PLOS ONE | 2012

Genetic and biochemical characterization of the cell wall hydrolase activity of the major secreted protein of Lactobacillus rhamnosus GG

Ingmar J. J. Claes; Geert Schoofs; Krzysztof Regulski; Pascal Courtin; Marie-Pierre Chapot-Chartier; Thomas Rolain; Pascal Hols; Ingemar von Ossowski; Justus Reunanen; Willem M. de Vos; Airi Palva; Jos Vanderleyden; Sigrid De Keersmaecker; Sarah Lebeer

Lactobacillus rhamnosus GG (LGG) produces two major secreted proteins, designated here Msp1 (LGG_00324 or p75) and Msp2 (LGG_00031 or p40), which have been reported to promote the survival and growth of intestinal epithelial cells. Intriguingly, although each of these proteins shares homology with cell wall hydrolases, a physiological function that correlates with such an enzymatic activity remained to be substantiated in LGG. To investigate the bacterial function, we constructed knock-out mutants in the corresponding genes aiming to establish a genotype to phenotype relation. Microscopic examination of the msp1 mutant showed the presence of rather long and overly extended cell chains, which suggests that normal daughter cell separation is hampered. Subsequent observation of the LGG wild-type cells by immunofluorescence microscopy revealed that the Msp1 protein accumulates at the septum of exponential-phase cells. The cell wall hydrolyzing activity of the Msp1 protein was confirmed by zymogram analysis. Subsequent analysis by RP-HPLC and mass spectrometry of the digestion products of LGG peptidoglycan (PG) by Msp1 indicated that the Msp1 protein has D-glutamyl-L-lysyl endopeptidase activity. Immunofluorescence microscopy and the failure to construct a knock-out mutant suggest an indispensable role for Msp2 in priming septum formation in LGG.

Collaboration


Dive into the Pascal Courtin's collaboration.

Top Co-Authors

Avatar

Saulius Kulakauskas

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pascal Hols

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Guillot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Elvis Bernard

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Thomas Rolain

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Mézange

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Péchoux

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge