Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christine Péchoux is active.

Publication


Featured researches published by Christine Péchoux.


Biomaterials | 2011

Long term in vivo biotransformation of iron oxide nanoparticles.

Michael Levy; Nathalie Luciani; Damien Alloyeau; Vanessa Deveaux; Christine Péchoux; Sophie Chat; Guillaume Wang; Nidhi Vats; Francois Gendron; Cécile Factor; Alain Luciani; Claire Wilhelm; Florence Gazeau

The long term outcome of nanoparticles in the organism is one of the most important concerns raised by the development of nanotechnology and nanomedicine. Little is known on the way taken by cells to process and degrade nanoparticles over time. In this context, iron oxide superparamagnetic nanoparticles benefit from a privileged status, because they show a very good tolerance profile, allowing their clinical use for MRI diagnosis. It is generally assumed that the specialized metabolism which regulates iron in the organism can also handle iron oxide nanoparticles. However the biotransformation of iron oxide nanoparticles is still not elucidated. Here we propose a multiscale approach to study the fate of nanomagnets in the organism. Ferromagnetic resonance and SQUID magnetization measurements are used to quantify iron oxide nanoparticles and follow the evolution of their magnetic properties. A nanoscale structural analysis by electron microscopy complements the magnetic follow-up of nanoparticles injected to mice. We evidence the biotransformation of superparamagnetic maghemite nanoparticles into poorly-magnetic iron species probably stored into ferritin proteins over a period of three months. A putative mechanism is proposed for the biotransformation of iron-oxide nanoparticles.


Circulation | 2015

Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension

Benoit Ranchoux; Fabrice Antigny; Catherine Rucker-Martin; Aurélie Hautefort; Christine Péchoux; Harm J. Bogaard; Peter Dorfmüller; Séverine Rémy; Florence Lecerf; Sylvie Planté; Sophie Chat; Elie Fadel; Amal Houssaini; Ignacio Anegon; Serge Adnot; Gérald Simonneau; Marc Humbert; Sylvia Cohen-Kaminsky; Frédéric Perros

Background— The vascular remodeling responsible for pulmonary arterial hypertension (PAH) involves predominantly the accumulation of &agr;-smooth muscle actin–expressing mesenchymal-like cells in obstructive pulmonary vascular lesions. Endothelial-to-mesenchymal transition (EndoMT) may be a source of those &agr;-smooth muscle actin–expressing cells. Methods and Results— In situ evidence of EndoMT in human PAH was obtained by using confocal microscopy of multiple fluorescent stainings at the arterial level, and by using transmission electron microscopy and correlative light and electron microscopy at the ultrastructural level. Findings were confirmed by in vitro analyses of human PAH and control cultured pulmonary artery endothelial cells. In addition, the mRNA and protein signature of EndoMT was recognized at the arterial and lung level by quantitative real-time polymerase chain reaction and Western blot analyses. We confirmed our human observations in established animal models of pulmonary hypertension (monocrotaline and SuHx). After establishing the first genetically modified rat model linked to BMPR2 mutations (BMPR2&Dgr;140Ex1/+ rats), we demonstrated that EndoMT is linked to alterations in signaling of BMPR2, a gene that is mutated in 70% of cases of familial PAH and in 10% to 40% of cases of idiopathic PAH. We identified molecular actors of this pathological transition, including twist overexpression and vimentin phosphorylation. We demonstrated that rapamycin partially reversed the protein expression patterns of EndoMT, improved experimental PAH, and decreased the migration of human pulmonary artery endothelial cells, providing the proof of concept that EndoMT is druggable. Conclusions— EndoMT is linked to alterations in BPMR2 signaling and is involved in the occlusive vas cular remodeling of PAH, findings that may have therapeutic implications.


ACS Nano | 2013

Biodegradation of Iron Oxide Nanocubes: High-Resolution In Situ Monitoring

Lénaic Lartigue; Damien Alloyeau; Jelena Kolosnjaj-Tabi; Yasir Javed; Pablo Guardia; Andreas Riedinger; Christine Péchoux; Teresa Pellegrino; Claire Wilhelm; Florence Gazeau

The long-term fate of nanomaterials in biological environment represents a critical matter, which determines environmental effects and potential risks for human health. Predicting these risks requires understanding of nanoparticle transformations, persistence, and degradation, some issues somehow ignored so far. Safe by design, inorganic nanostructures are being envisioned for therapy, yet fundamental principles of their processing in biological systems, change in physical properties, and in situ degradability have not been thoroughly assessed. Here we report the longitudinal visualization of iron oxide nanocube transformations inflicted by the intracellular-like environment. Structural degradation of individual nanocubes with two different surface coatings (amphiphilic polymer shell and polyethylene glycol ligand molecules) was monitored at the atomic scale with aberration-corrected high-resolution transmission electron microscopy. Our results suggest that the polymer coating controls surface reactivity and that availability and access of chelating agents to the crystal surface govern the degradation rate. This in situ study of single nanocube degradation was compared to intracellular transformations observed in mice over 14 days after intravenous injection, revealing the role of nanoparticle clustering, intracellular sorting within degradation compartments, and iron transfer and recycling into ferritin storage proteins. Our approach reduces the gap between in situ nanoscale observations in mimicking biological environments and in vivo real tracking of nanoparticle fate.


Journal of Biological Chemistry | 2010

Cell Surface of Lactococcus lactis Is Covered by a Protective Polysaccharide Pellicle

Marie-Pierre Chapot-Chartier; Evgeny Vinogradov; Irina Sadovskaya; Guillaume Andre; Michel-Yves Mistou; Patrick Trieu-Cuot; Sylviane Furlan; Elena Bidnenko; Pascal Courtin; Christine Péchoux; Pascal Hols; Yves F. Dufrêne; Saulius Kulakauskas

In Gram-positive bacteria, the functional role of surface polysaccharides (PS) that are not of capsular nature remains poorly understood. Here, we report the presence of a novel cell wall PS pellicle on the surface of Lactococcus lactis. Spontaneous PS-negative mutants were selected using semi-liquid growth conditions, and all mutations were mapped in a single chromosomal locus coding for PS biosynthesis. PS molecules were shown to be composed of hexasaccharide phosphate repeating units that are distinct from other bacterial PS. Using complementary atomic force and transmission electron microscopy techniques, we showed that the PS layer forms an outer pellicle surrounding the cell. Notably, we found that this cell wall layer confers a protective barrier against host phagocytosis by murine macrophages. Altogether, our results suggest that the PS pellicle could represent a new cell envelope structural component of Gram-positive bacteria.


Journal of Virology | 2008

Annexin II incorporated into influenza virus particles supports virus replication by converting plasminogen into plasmin

Fanny LeBouder; Eric Morello; Françoise Bosse; Christine Péchoux; Bernard Delmas; Béatrice Riteau

ABSTRACT For influenza viruses to become infectious, the proteolytic cleavage of hemagglutinin (HA) is essential. This usually is mediated by trypsin-like proteases in the respiratory tract. The binding of plasminogen to influenza virus A/WSN/33 leads to the cleavage of HA, a feature determining its pathogenicity and neurotropism in mice. Here, we demonstrate that plasminogen also promotes the replication of other influenza virus strains. The inhibition of the conversion of plasminogen into plasmin blocked influenza virus replication. Evidence is provided that the activation of plasminogen is mediated by the host cellular protein annexin II, which is incorporated into the virus particles. Indeed, the inhibition of plasminogen binding to annexin II by using a competitive inhibitor inhibits plasminogen activation into plasmin. Collectively, these results indicate that the annexin II-mediated activation of plasminogen supports the replication of influenza viruses, which may contribute to their pathogenicity.


Molecular & Cellular Proteomics | 2013

Surface Proteome Analysis of a Natural Isolate of Lactococcus lactis Reveals the Presence of Pili Able to Bind Human Intestinal Epithelial Cells

Mickael Meyrand; Alain Guillot; Mélodie Goin; Sylviane Furlan; Julija Armalyte; Saulius Kulakauskas; Ginette Thomas; Sophie Chat; Christine Péchoux; Vincent Dupres; Pascal Hols; Yves F. Dufrêne; Germain Trugnan; Marie-Pierre Chapot-Chartier

Surface proteins of Gram-positive bacteria play crucial roles in bacterial adhesion to host tissues. Regarding commensal or probiotic bacteria, adhesion to intestinal mucosa may promote their persistence in the gastro-intestinal tract and their beneficial effects to the host. In this study, seven Lactococcus lactis strains exhibiting variable surface physico-chemical properties were compared for their adhesion to Caco-2 intestinal epithelial cells. In this test, only one vegetal isolate TIL448 expressed a high-adhesion phenotype. A nonadhesive derivative was obtained by plasmid curing from TIL448, indicating that the adhesion determinants were plasmid-encoded. Surface-exposed proteins in TIL448 were analyzed by a proteomic approach consisting in shaving of the bacterial surface with trypsin and analysis of the released peptides by LC-MS/MS. As the TIL448 complete genome sequence was not available, the tryptic peptides were identified by a mass matching approach against a database including all Lactococcus protein sequences and the sequences deduced from partial DNA sequences of the TIL448 plasmids. Two surface proteins, encoded by plasmids in TIL448, were identified as candidate adhesins, the first one displaying pilin characteristics and the second one containing two mucus-binding domains. Inactivation of the pilin gene abolished adhesion to Caco-2 cells whereas inactivation of the mucus-binding protein gene had no effect on adhesion. The pilin gene is located inside a cluster of four genes encoding two other pilin-like proteins and one class-C sortase. Synthesis of pili was confirmed by immunoblotting detection of high molecular weight forms of pilins associated to the cell wall as well as by electron and atomic force microscopy observations. As a conclusion, surface proteome analysis allowed us to detect pilins at the surface of L. lactis TIL448. Moreover we showed that pili appendages are formed and involved in adhesion to Caco-2 intestinal epithelial cells.


PLOS ONE | 2010

Use of Human Cancer Cell Lines Mitochondria to Explore the Mechanisms of BH3 Peptides and ABT-737-Induced Mitochondrial Membrane Permeabilization

Nelly Buron; Mathieu Porceddu; Magali Brabant; Diana Desgué; Cindy Racoeur; Myriam Lassalle; Christine Péchoux; Pierre Rustin; Etienne Jacotot; Annie Borgne-Sanchez

Current limitations of chemotherapy include toxicity on healthy tissues and multidrug resistance of malignant cells. A number of recent anti-cancer strategies aim at targeting the mitochondrial apoptotic machinery to induce tumor cell death. In this study, we set up protocols to purify functional mitochondria from various human cell lines to analyze the effect of peptidic and xenobiotic compounds described to harbour either Bcl-2 inhibition properties or toxic effects related to mitochondria. Mitochondrial inner and outer membrane permeabilization were systematically investigated in cancer cell mitochondria versus non-cancerous mitochondria. The truncated (t-) Bid protein, synthetic BH3 peptides from Bim and Bak, and the small molecule ABT-737 induced a tumor-specific and OMP-restricted mitochondrio-toxicity, while compounds like HA-14.1, YC-137, Chelerythrine, Gossypol, TW-37 or EM20-25 did not. We found that ABT-737 can induce the Bax-dependent release of apoptotic proteins (cytochrome c, Smac/Diablo and Omi/HtrA2 but not AIF) from various but not all cancer cell mitochondria. Furthermore, ABT-737 addition to isolated cancer cell mitochondria induced oligomerization of Bax and/or Bak monomers already inserted in the mitochondrial membrane. Finally immunoprecipatations indicated that ABT-737 induces Bax, Bak and Bim desequestration from Bcl-2 and Bcl-xL but not from Mcl-1L. This study investigates for the first time the mechanism of action of ABT-737 as a single agent on isolated cancer cell mitochondria. Hence, this method based on MOMP (mitochondrial outer membrane permeabilization) is an interesting screening tool, tailored for identifying Bcl-2 antagonists with selective toxicity profile against cancer cell mitochondria but devoid of toxicity against healthy mitochondria.


PLOS ONE | 2012

Pilus Biogenesis in Lactococcus lactis: Molecular Characterization and Role in Aggregation and Biofilm Formation

Virginie Oxaran; Florence Ledue-Clier; Yakhya Dieye; Jean-Marie Herry; Christine Péchoux; Thierry Meylheuc; Romain Briandet; Vincent Juillard; Jean-Christophe Piard

The genome of Lactococcus lactis strain IL1403 harbors a putative pilus biogenesis cluster consisting of a sortase C gene flanked by 3 LPxTG protein encoding genes (yhgD, yhgE, and yhhB), called here pil. However, pili were not detected under standard growth conditions. Over-expression of the pil operon resulted in production and display of pili on the surface of lactococci. Functional analysis of the pilus biogenesis machinery indicated that the pilus shaft is formed by oligomers of the YhgE pilin, that the pilus cap is formed by the YhgD pilin and that YhhB is the basal pilin allowing the tethering of the pilus fibers to the cell wall. Oligomerization of pilin subunits was catalyzed by sortase C while anchoring of pili to the cell wall was mediated by sortase A. Piliated L. lactis cells exhibited an auto-aggregation phenotype in liquid cultures, which was attributed to the polymerization of major pilin, YhgE. The piliated lactococci formed thicker, more aerial biofilms compared to those produced by non-piliated bacteria. This phenotype was attributed to oligomers of YhgE. This study provides the first dissection of the pilus biogenesis machinery in a non-pathogenic Gram-positive bacterium. Analysis of natural lactococci isolates from clinical and vegetal environments showed pili production under standard growth conditions. The identification of functional pili in lactococci suggests that the changes they promote in aggregation and biofilm formation may be important for the natural lifestyle as well as for applications in which these bacteria are used.


Circulation | 2016

Potassium-Channel Subfamily K-Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension

Fabrice Antigny; Aurélie Hautefort; Jolyane Meloche; Milia Belacel-Ouari; Boris Manoury; Catherine Rucker-Martin; Christine Péchoux; François Potus; Valérie Nadeau; Eve Tremblay; Grégoire Ruffenach; Alice Bourgeois; Peter Dorfmüller; Sandra Breuils-Bonnet; Elie Fadel; Benoit Ranchoux; Philippe Jourdon; Barbara Girerd; David Montani; Steeve Provencher; Sébastien Bonnet; Gérald Simonneau; Marc Humbert; Frédéric Perros

Background— Mutations in the KCNK3 gene have been identified in some patients suffering from heritable pulmonary arterial hypertension (PAH). KCNK3 encodes an outward rectifier K+ channel, and each identified mutation leads to a loss of function. However, the pathophysiological role of potassium channel subfamily K member 3 (KCNK3) in PAH is unclear. We hypothesized that loss of function of KCNK3 is a hallmark of idiopathic and heritable PAH and contributes to dysfunction of pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, leading to pulmonary artery remodeling: consequently, restoring KCNK3 function could alleviate experimental pulmonary hypertension (PH). Methods and Results— We demonstrated that KCNK3 expression and function were reduced in human PAH and in monocrotaline-induced PH in rats. Using a patch-clamp technique in freshly isolated (not cultured) pulmonary artery smooth muscle cells and pulmonary artery endothelial cells, we found that KCNK3 current decreased progressively during the development of monocrotaline-induced PH and correlated with plasma-membrane depolarization. We demonstrated that KCNK3 modulated pulmonary arterial tone. Long-term inhibition of KCNK3 in rats induced distal neomuscularization and early hemodynamic signs of PH, which were related to exaggerated proliferation of pulmonary artery endothelial cells, pulmonary artery smooth muscle cell, adventitial fibroblasts, and pulmonary and systemic inflammation. Lastly, in vivo pharmacological activation of KCNK3 significantly reversed monocrotaline-induced PH in rats. Conclusions— In PAH and experimental PH, KCNK3 expression and activity are strongly reduced in pulmonary artery smooth muscle cells and endothelial cells. KCNK3 inhibition promoted increased proliferation, vasoconstriction, and inflammation. In vivo pharmacological activation of KCNK3 alleviated monocrotaline-induced PH, thus demonstrating that loss of KCNK3 is a key event in PAH pathogenesis and thus could be therapeutically targeted.


Nano Letters | 2012

Intercellular carbon nanotube translocation assessed by flow cytometry imaging.

Iris Marangon; Nicole Boggetto; Cécilia Ménard-Moyon; Enrica Venturelli; Marie-Lys Beoutis; Christine Péchoux; Nathalie Luciani; Claire Wilhelm; Alberto Bianco; Florence Gazeau

The fate of carbon nanotubes in the organism is still controversial. Here, we propose a statistical high-throughput imaging method to localize and quantify functionalized multiwalled carbon nanotubes in cells. We give the first experimental evidence of an intercellular translocation of carbon nanotubes. This stress-induced longitudinal transfer of nanomaterials is mediated by cell-released microvesicles known as vectors for intercellular communication. This finding raises new critical issues for nanotoxicology, since carbon nanotubes could be disseminated by circulating extracellular cell-released vesicles and visiting several cells in the course of their passage into the organism.

Collaboration


Dive into the Christine Péchoux's collaboration.

Top Co-Authors

Avatar

Sophie Chat

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Eric Chanat

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Eve Devinoy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marc Humbert

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Marie-Pierre Chapot-Chartier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Saulius Kulakauskas

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alain Pauloin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Hue-Beauvais

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Etienne Aujean

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pascal Courtin

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge