Pascal Douillet
Institut de recherche pour le développement
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pascal Douillet.
Sensors | 2008
Sylvain Ouillon; Pascal Douillet; Anne Petrenko; Jacques Neveux; Cécile Dupouy; Jean-Marie Froidefond; Serge Andréfouët; Alain Muñoz-Caravaca
Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba), and sediment-rich waters in the Laucala Bay (Fiji). In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations). The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if < 1 FTU, it is recalculated using an algorithm based on Rrs620.Rrs681/Rrs412. On our data set, this algorithm is suitable for the 0.2-25 FTU turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU). This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach.
Coral Reefs | 2004
Christel Pinazo; Stéphane Bujan; Pascal Douillet; Renaud Fichez; Christian Grenz; A Maurin
A coupled three-dimensional physical-biological model was developed in order to simulate the ecological functioning and potential impacts of land-derived inputs in the southwest lagoon of New Caledonia. This model considered pelagic biogeochemical cycling of organic matter, taking into account advection and diffusion processes driven mainly by local wind fields and freshwater discharges. Modeled phytoplankton dynamics were strongly correlated with both freshwater nutrient inputs and wind-driven hydrodynamic processes, the latter resulting in a large input of oceanic water from the southeast part of the lagoon under trade wind conditions. In situ data obtained during the summer (January 1998) under trade wind conditions supported predicted concentration gradients along several coast to reef transects and provided a validation of the coupled physical-biogeochemical model. An additional sensitivity analysis showed that the alteration of the biogeochemical parameters did not strongly affect the results of the model. Freshwater inputs of nutrients were simulated using a realistic scenario corresponding to the summer rainy season of 1997–1998 in New Caledonia. Despite occasional flooding events from the main rivers considered in these simulations, no significant meso-scale phytoplankton bloom was identified. Hydrodynamically driven dispersion and rapid uptake of nutrients by phytoplankton were sufficient to spatially constrain the impact of river inputs and maintain oligotrophic conditions. The fine spatial grid of our three-dimensional model demonstrated that eutrophication in the southwest lagoon of New Caledonia is confined to the most restricted coastal embayments, while most of the lagoon experiences sustained oligotrophic conditions.
International Journal of Oceanography | 2009
Jacques Neveux; Márcio Murilo Barboza Tenório; S. Jacquet; Jean-Pascal Torréton; Pascal Douillet; Sylvain Ouillon; Cécile Dupouy
Spatio-temporal variations of chlorophylls and phycoerythrins, inferred by spectrofluorometric methods, were studied from April 2002 to June 2003 in the southwest lagoon and oceanic waters of New Caledonia. Trade winds blew 75% of the time and appeared as the main factor influencing surface Tchl (sum of monovinyl- and divinyl-chlorophyll ) variations in the ocean, near the barrier reef. Lagoon and oceanic waters differed in the composition of picoplanktonic cyanobacteria with a relative dominance of Prochlorococcus and high-phycourobilin Synechococcus in the ocean, and a relative dominance of high-phycoerythrobilin Synechococcus in the lagoon. Main pigment variations in the lagoon were associated with cyclone Erica in March 2003 and showed a 5-6 fold Tchl increase around Noumea. The cyclone stimulated mainly diatom growth as indicated by the high chlorophyll ()/chlorophyll ratio and by the lowest values for the other pigment ratios. The relative importance of divinyl-chlorophyll concentration and fluorescence excitation spectra of phycoerythrins appeared as useful tools for characterizing lagoon-ocean exchanges.
Conference on Remote Sensing of the Coastal Ocean, Land, and Atmosphere Environment | 2010
Rosalie Fuchs; Christel Pinazo; Pascal Douillet; Cécile Dupouy; Vincent Faure; Antoine Mangin
The major part of the New Caledonia (NC) lagoon was classified as UNESCO Natural Site of Humanity Patrimony. Indeed, 22 175 km2 of tropical coral lagoon area exhibit high biodiversity. The NC lagoon is semi enclosed and connected to the Coral Sea through a barrier reef segmented by narrow passes. The environment is oligotrophic, due to important flush during trade winds events, and bathymetry is highly variable. In order to predict eutrophication events, we used an extension of a 3D coupled physical-biogeochemical model recently developed on NC south western lagoon. The model is based on the Nitrogen and Carbon cycles, relating the variable stoechiometry of the elements in each biological compartment. The ecological model was developed to include an explicit description of the microbial loop. The resulting coupled model, forced by tide, wind, light, temperature and freshwater inputs, was used to calculate phytoplankton biomass, bacterial production, dissolved organic matter concentrations and nutrient recycling. Here we present results issued from the 3D coupled model ECO3M_LAGOON (biogeochemical, LOPB-IRD) and MARS3D (regional physical model, IFREMER-IRD) describing spatial and temporal interactions between water motion and biology, on larger domain including reef barrier and water exchanges through ocean-lagoon interface. To validate physical processes in the lagoon we used in situ data collected during field cruise (ValHyBio 2008, La Niña episode). Surface chlorophyll concentrations are compared with water color data from ValHyBio cruise and satellite data (MODIS/MERIS) corrected from bathymetry effects.
Continental Shelf Research | 2006
Aymeric Jouon; Pascal Douillet; Sylvain Ouillon; Philippe Fraunié
Coral Reefs | 2001
Pascal Douillet; Sylvain Ouillon; E. Cordier
Estuarine Coastal and Shelf Science | 2007
Jean-Pascal Torréton; Emma Rochelle-Newall; Aymeric Jouon; Vincent Faure; Séverine Jacquet; Pascal Douillet
Marine Pollution Bulletin | 2006
Jean-Michel Fernandez; Sylvain Ouillon; Christophe Chevillon; Pascal Douillet; Renaud Fichez; Romain Le Gendre
Marine Geology | 2008
Aymeric Jouon; Sylvain Ouillon; Pascal Douillet; Jean Pierre Lefebvre; Jean Michel Fernandez; Xavier Mari; Jean-Marie Froidefond
Marine Pollution Bulletin | 2010
Renaud Fichez; S. Chifflet; Pascal Douillet; Philippe Gerard; F. Gutierrez; Aymeric Jouon; Sylvain Ouillon; Christian Grenz