Pascale G. Charest
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pascale G. Charest.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Mounia Azzi; Pascale G. Charest; Stephane Angers; Guy Rousseau; Trudy Kohout; Michel Bouvier; Graciela Piñeyro
It is becoming increasingly clear that signaling via G protein-coupled receptors is a diverse phenomenon involving receptor interaction with a variety of signaling partners. Despite this diversity, receptor ligands are commonly classified only according to their ability to modify G protein-dependent signaling. Here we show that β2AR ligands like ICI118551 and propranolol, which are inverse agonists for Gs-stimulated adenylyl cyclase, induce partial agonist responses for the mitogen-activated protein kinases extracellular signal-regulated kinase (ERK) 1/2 thus behaving as dual efficacy ligands. ERK1/2 activation by dual efficacy ligands was not affected by ADP-ribosylation of Gαi and could be observed in S49-cyc– cells lacking Gαs indicating that, unlike the conventional agonist isoproterenol, these drugs induce ERK1/2 activation in a Gs/i-independent manner. In contrast, this activation was inhibited by a dominant negative mutant of β-arrestin and was abolished in mouse embryonic fibroblasts lacking β-arrestin 1 and 2. The role of β-arrestin was further confirmed by showing that transfection of β-arrestin 2 in these knockout cells restored ICI118551 promoted ERK1/2 activation. ICI118551 and propranolol also promoted β-arrestin recruitment to the receptor. Taken together, these observations suggest that β-arrestin recruitment is not an exclusive property of agonists, and that ligands classically classified as inverse agonists rely exclusively on β-arrestin for their positive signaling activity. This phenomenon is not unique to β2-adrenergic ligands because SR121463B, an inverse agonist on the V2 vasopressin receptor-stimulated adenylyl cyclase, recruited β-arrestin and stimulated ERK1/2. These results point to a multistate model of receptor activation in which ligand-specific conformations are capable of differentially activating distinct signaling partners.
Journal of Cell Science | 2008
Verena Kölsch; Pascale G. Charest; Richard A. Firtel
Phosphoinositide 3-kinase (PI3K), PTEN and localized phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] play key roles in chemotaxis, regulating cell motility by controlling the actin cytoskeleton in Dictyostelium and mammalian cells. PtdIns(3,4,5)P3, produced by PI3K, acts via diverse downstream signaling components, including the GTPase Rac, Arf-GTPases and the kinase Akt (PKB). It has become increasingly apparent, however, that chemotaxis results from an interplay between the PI3K-PTEN pathway and other parallel pathways in Dictyostelium and mammalian cells. In Dictyostelium, the phospholipase PLA2 acts in concert with PI3K to regulate chemotaxis, whereas phospholipase C (PLC) plays a supporting role in modulating PI3K activity. In adenocarcinoma cells, PLC and the actin regulator cofilin seem to provide the direction-sensing machinery, whereas PI3K might regulate motility.
Biochemical Journal | 2007
Pascale G. Charest; Richard A. Firtel
Small GTPases are involved in the control of diverse cellular behaviours, including cellular growth, differentiation and motility. In addition, recent studies have revealed new roles for small GTPases in the regulation of eukaryotic chemotaxis. Efficient chemotaxis results from co-ordinated chemoattractant gradient sensing, cell polarization and cellular motility, and accumulating data suggest that small GTPase signalling plays a central role in each of these processes as well as in signal relay. The present review summarizes these recent findings, which shed light on the molecular mechanisms by which small GTPases control directed cell migration.
Journal of Cell Biology | 2007
Atsuo T. Sasaki; Chris Janetopoulos; Susan Lee; Pascale G. Charest; Kosuke Takeda; Lauren W. Sundheimer; Ruedi Meili; Peter N. Devreotes; Richard A. Firtel
Phosphoinositide 3-kinase (PI3K)γ and Dictyostelium PI3K are activated via G protein–coupled receptors through binding to the Gβγ subunit and Ras. However, the mechanistic role(s) of Gβγ and Ras in PI3K activation remains elusive. Furthermore, the dynamics and function of PI3K activation in the absence of extracellular stimuli have not been fully investigated. We report that gβ null cells display PI3K and Ras activation, as well as the reciprocal localization of PI3K and PTEN, which lead to local accumulation of PI(3,4,5)P3. Simultaneous imaging analysis reveals that in the absence of extracellular stimuli, autonomous PI3K and Ras activation occur, concurrently, at the same sites where F-actin projection emerges. The loss of PI3K binding to Ras–guanosine triphosphate abolishes this PI3K activation, whereas prevention of PI3K activity suppresses autonomous Ras activation, suggesting that PI3K and Ras form a positive feedback circuit. This circuit is associated with both random cell migration and cytokinesis and may have initially evolved to control stochastic changes in the cytoskeleton.
EMBO Reports | 2005
Pascale G. Charest; Sonia Terrillon; Michel Bouvier
Recruitment of β‐arrestin (β‐arr) to agonist‐stimulated G‐protein‐coupled receptors (GPCRs) has a crucial role in controlling signalling efficacy and selectivity. When translocated to the receptor, β‐arr is believed to undergo important conformational rearrangement necessary for its downstream actions. To probe these changes in living cells, we constructed an intramolecular bioluminescence resonance energy transfer (BRET)‐based biosensor, in which β‐arr is sandwiched between the Renilla luciferase (Luc) and the yellow fluorescent protein (YFP). We show that the intramolecular BRET between Luc and YFP was significantly increased following GPCR activation, suggesting a conformational rearrangement bringing the amino terminus and carboxyl terminus of β‐arr in closer proximity. Kinetic analysis showed that this conformational change follows the initial β‐arr/receptor engagement. In addition to providing new insights into the agonist‐induced conformational rearrangements of β‐arr in living cells, the double‐brilliance β‐arr offers a universal biosensor for GPCR activation, allowing the study of native receptors in large‐scale screening analysis.
Nature Methods | 2004
Julie Perroy; Stéphanie Pontier; Pascale G. Charest; Muriel Aubry; Michel Bouvier
Ubiquitin has emerged as an important regulator of protein stability and function in organisms ranging from yeast to mammals. The ability to detect in situ changes in protein ubiquitination without perturbing the physiological environment of cells would be a major step forward in understanding the ubiquitination process and its consequences. Here, we describe a new method to study this dynamic post-translational modification in intact human embryonic kidney cells. Using bioluminescence resonance energy transfer (BRET), we measured the ubiquitination of β-arrestin 2, a regulatory protein implicated in the modulation of G protein–coupled receptors. In addition to allowing the detection of basal and GPCR-regulated ubiquitination of β-arrestin 2 in living cells, real-time BRET measurements permitted the recording of distinct ubiquitination kinetics that are dictated by the identity of the activated receptor. The ubiquitination BRET assay should prove to be a useful tool for studying the dynamic ubiquitination of proteins and for understanding which cellular functions are regulated by this post-translational event.
Developmental Cell | 2010
Pascale G. Charest; Zhouxin Shen; Ashley Lakoduk; Atsuo T. Sasaki; Steven P. Briggs; Richard A. Firtel
Ras was found to regulate Dictyostelium chemotaxis, but the mechanisms that spatially and temporally control Ras activity during chemotaxis remain largely unknown. We report the discovery of a Ras signaling complex that includes the Ras guanine exchange factor (RasGEF) Aimless, RasGEFH, protein phosphatase 2A (PP2A), and a scaffold designated Sca1. The Sca1/RasGEF/PP2A complex is recruited to the plasma membrane in a chemoattractant- and F-actin-dependent manner and is enriched at the leading edge of chemotaxing cells where it regulates F-actin dynamics and signal relay by controlling the activation of RasC and the downstream target of rapamycin complex 2 (TORC2)-Akt/protein kinase B (PKB) pathway. In addition, PKB and PKB-related PKBR1 phosphorylate Sca1 and regulate the membrane localization of the Sca1/RasGEF/PP2A complex, and thereby RasC activity, in a negative feedback fashion. Thus, our study uncovered a molecular mechanism whereby RasC activity and the spatiotemporal activation of TORC2 are tightly controlled at the leading edge of chemotaxing cells.
Science Signaling | 2012
Kosuke Takeda; Danying Shao; Micha Adler; Pascale G. Charest; William F. Loomis; Herbert Levine; Alex Groisman; Wouter-Jan Rappel; Richard A. Firtel
Rapid adaptation to changes in chemoattractant concentration involves an incoherent feedforward structure of the underlying signaling network. Adapting Incoherently The model organism Dictyostelium moves toward higher concentrations of the chemoattractant cAMP (cyclic adenosine monophosphate), which activates a receptor that then stimulates effector proteins of the Ras family. Takeda et al. sought to understand how Dictyostelium adapts to rapid changes in chemoattractant by measuring the kinetics of Ras activation in cells exposed to cAMP. Mathematical modeling indicated that a signaling network in which the chemoattractant activates two components, which respectively activate and inhibit a third component, accurately described the data obtained from cAMP-stimulated cells. This type of network, called incoherent feedforward control, may be conserved in other chemotactic signaling networks. Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein–coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase–activating protein acting as a global inhibitor.
Journal of Biological Chemistry | 2003
Pascale G. Charest; Michel Bouvier
A large number of G protein-coupled receptors are palmitoylated on cysteine residues located in their carboxyl tail, but the general role of this post-translational modification remains poorly understood. Here we show that preventing palmitoylation of the V2 vasopressin receptor, by site-directed mutagenesis of cysteines 341 and 342, significantly delayed and decreased both agonist-promoted receptor endocytosis and mitogen-activated protein kinase activation. Pharmacological blockade of receptor endocytosis is without effect on the vasopressin-stimulated mitogen-activated protein kinase activity, excluding the possibility that the reduced kinase activation mediated by the palmitoylation-less mutant could result from altered receptor endocytosis. In contrast, two dominant negative mutants of β-arrestin which inhibit receptor endocytosis also attenuated vasopressin-stimulated mitogen-activated protein kinase activity, suggesting that the scaffolding protein, β-arrestin, represents the common link among receptor palmitoylation, endocytosis, and kinase activation. Coimmunoprecipitation and bioluminescence resonance energy transfer experiments confirmed that inhibiting receptor palmitoylation considerably reduced the vasopressin-stimulated recruitment of β-arrestin to the receptor. Interestingly, the changes in β-arrestin recruitment kinetics were similar to those observed for vasopressin-stimulated receptor endocytosis and mitogen-activated protein kinase activation. Taken together the results indicate that palmitoylation enhances the recruitment of β-arrestin to the activated V2 vasopressin receptor thus facilitating processes requiring the scaffolding action of β-arrestin.
Journal of Biological Chemistry | 2007
Fadi F. Hamdan; Moulay Driss Rochdi; Billy Breton; Delphine Fessart; Douce E. Michaud; Pascale G. Charest; Stéphane A. Laporte; Michel Bouvier
The most widely studied pathway underlying agonist-promoted internalization of G protein-coupled receptors (GPCRs) involves β-arrestin and clathrin-coated pits. However, both β-arrestin- and clathrin-independent processes have also been reported. Classically, the endocytic routes are characterized using pharmacological inhibitors and various dominant negative mutants, resulting sometimes in conflicting results and interpretational difficulties. Here, taking advantage of the fact that β-arrestin binding to the β2 subunit of the clathrin adaptor AP-2 (β2-adaptin) is needed for the β-arrestin-mediated targeting of GPCRs to clathrin-coated pits, we developed a bioluminescence resonance energy transfer-based approach directly assessing the molecular steps involved in the endocytosis of GPCRs in living cells. For 10 of the 12 receptors tested, including some that were previously suggested to internalize via clathrin-independent pathways, agonist stimulation promoted β-arrestin 1 and 2 interaction with β2-adaptin, indicating a β-arrestin- and clathrin-dependent endocytic process. Detailed analyses of β-arrestin interactions with both the receptor and β2-adaptin also allowed us to demonstrate that recruitment of β-arrestins to the receptor and the ensuing conformational changes are the leading events preceding AP-2 engagement and subsequent clathrin-mediated endocytosis. Among the receptors tested, only the endothelin A and B receptors failed to promote interaction between β-arrestins and β2-adaptin. However, both receptors recruited β-arrestins upon agonist stimulation, suggesting a β-arrestin-dependent but clathrin-independent route of internalization for these two receptors. In addition to providing a new tool to dissect the molecular events involved in GPCR endocytosis, the bioluminescence resonance energy transfer-based β-arrestin/β2-adaptin interaction assay represents a novel biosensor to assess receptor activation.