Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pasi Kaukinen is active.

Publication


Featured researches published by Pasi Kaukinen.


Archives of Virology | 2005

Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties

Pasi Kaukinen; Antti Vaheri; Alexander Plyusnin

Summary.In recent years important progress has been made studying the nucleocapsid (N) protein of hantaviruses. The N protein presents a good example of a multifunctional viral macromolecule. It is a major structural component of a virion that encapsidates viral RNA (vRNA). It also interacts with the virus polymerase (L protein) and one of the glycoproteins. On top of these “house keeping” duties, the N protein performs interactive “ambassadorial” functions interfering with important regulatory pathways in the infected cells.


Virology Journal | 2006

Hepatitis C virus NS2 and NS3/4A proteins are potent inhibitors of host cell cytokine/chemokine gene expression

Pasi Kaukinen; Maarit Sillanpää; Sergei V. Kotenko; Rongtuan Lin; John Hiscott; Krister Melén; Ilkka Julkunen

BackgroundHepatitis C virus (HCV) encodes several proteins that interfere with the host cell antiviral response. Previously, the serine protease NS3/4A was shown to inhibit IFN-β gene expression by blocking dsRNA-activated retinoic acid-inducible gene I (RIG-I) and Toll-like receptor 3 (TLR3)-mediated signaling pathways.ResultsIn the present work, we systematically studied the effect of all HCV proteins on IFN gene expression. NS2 and NS3/4A inhibited IFN gene activation. NS3/4A inhibited the Sendai virus-induced expression of multiple IFN (IFN-α, IFN-β and IFN-λ1/IL-29) and chemokine (CCL5, CXCL8 and CXCL10) gene promoters. NS2 and NS3/4A, but not its proteolytically inactive form NS3/4A-S139A, were found to inhibit promoter activity induced by RIG-I or its adaptor protein Cardif (or IPS-1/MAVS/VISA). Both endogenous and transfected Cardif were proteolytically cleaved by NS3/4A but not by NS2 indicating different mechanisms of inhibition of host cell cytokine production by these HCV encoded proteases. Cardif also strongly colocalized with NS3/4A at the mitochondrial membrane, implicating the mitochondrial membrane as the site for proteolytic cleavage. In many experimental systems, IFN priming dramatically enhances RNA virus-induced IFN gene expression; pretreatment of HEK293 cells with IFN-α strongly enhanced RIG-I expression, but failed to protect Cardif from NS3/4A-mediated cleavage and failed to restore Sendai virus-induced IFN-β gene expression.ConclusionHCV NS2 and NS3/4A proteins were identified as potent inhibitors of cytokine gene expression suggesting an important role for HCV proteases in counteracting host cell antiviral response.


Virus Research | 2003

Non-covalent interaction between nucleocapsid protein of Tula hantavirus and small ubiquitin-related modifier-1, SUMO-1.

Pasi Kaukinen; Antti Vaheri; Alexander Plyusnin

To find cellular binding counterparts for the nucleocapsid protein (N) of Tula hantavirus (TULV), two cDNA libraries were screened using yeast two-hybrid systems based on LexA and Gal4 transcription factors. Five cDNA clones encoding SUMO-1 (Small Ubiquitin-related MOdifier, also known as sentrin) were selected in the LexA system. Confocal microscopy revealed that, in infected cells, TULV N protein and SUMO-1 colocalize at the perinuclear area providing further evidence for interaction between the two proteins. Neither endogenous nor transiently expressed SUMO-1 was found to be covalently linked to the N protein. Additional evidence that the interaction is non-covalent was obtained in immunoprecipitation experiments: N protein-specific antibodies precipitated SUMO-1 from TULV-infected Vero E6 cell lysate. By using a pepscan assay, two basic amino acid stretches in the N-terminal part of SUMO-1 were shown to be involved in the interaction.


Journal of General Virology | 2001

Interaction between molecules of hantavirus nucleocapsid protein

Pasi Kaukinen; Vesa Koistinen; Olli Vapalahti; Antti Vaheri; Alexander Plyusnin

Intermolecular interactions of Tula hantavirus N (nucleocapsid) protein were detected in the yeast two-hybrid system, prompting further attempts to study this phenomenon. Using chemical cross-linking and immunoblotting it was shown that the N protein from purified virus and from infected cell lysates as well as recombinant protein produced in a baculovirus expression system are capable of forming dimers, trimers and multimers, thus confirming the capacity of the protein molecules to interact with each other. An ELISA format was developed in which molecules of the recombinant N protein were shown to associate non-covalently, via electrostatic interactions. Divalent cations (Ca(2+), Mn(2+), Mg(2+), Ba(2+)) enhanced the process 3- to 8-fold suggesting that adequate folding of the N protein is crucial for the association. Based on these data a model for hantavirus nucleocapsid assembly is proposed, in which N molecules first trimerize around the viral RNA molecule, and then the trimers gradually assemble forming longer multimers.


Journal of Virology | 2003

Mapping of the regions involved in homotypic interactions of Tula hantavirus N protein

Pasi Kaukinen; Antti Vaheri; Alexander Plyusnin

ABSTRACT Hantavirus nucleocapsid (N) protein has been suggested to form homodimers and homotrimers that are further integrated into the nucleocapsid filaments around the viral RNA. Here we report detailed mapping of the regions involved in the homotypic N protein interactions in Tula hantavirus (TULV). Peptide scan screening was used to define the interaction regions, and the mammalian two-hybrid assay was used for the functional analysis of N protein mutants. To study linear regions responsible for N protein interaction(s), we used peptide scanning in which N peptides synthesized on membranes recognize recombinant TULV N protein. The data showed that the N protein bound to membrane-bound peptides comprising amino acids 13 to 30 and 41 to 57 in the N-terminal part and 340 to 379, 391 to 407, and 410 to 419 in the C-terminal part of the molecule. Further mapping of the interaction regions by alanine scanning indicated the importance of basic amino acids along the N protein and especially asparagine-394, histidine-395, and phenyalanine-396 in forming the binding interface. Analysis of truncated mutants in the mammalian two-hybrid assay showed that N-terminal amino acids 1 to 43 are involved in and C-terminal amino acids 393 to 398 (VNHFHL) are absolutely crucial for the homotypic interactions. Furthermore, our data suggested a tail-to-tail and head-to-head binding scheme for the N proteins.


Journal of Virology | 2004

Oligomerization of Hantavirus N Protein: C-Terminal α-Helices Interact To Form a Shared Hydrophobic Space

Pasi Kaukinen; Vibhor Kumar; Kirsi Tulimäki; Peter Engelhardt; Antti Vaheri; Alexander Plyusnin

ABSTRACT The structure of the nucleocapsid protein of bunyaviruses has not been defined. Earlier we have shown that Tula hantavirus N protein oligomerization is dependent on the C-terminal domains. Of them, the helix-loop-helix motif was found to be an essential structure. Computer modeling predicted that oligomerization occurs via helix protrusions, and the shared hydrophobic space formed by amino acids residues 380-IILLF-384 in the first helix and 413-LI-414 in the second helix is responsible for stabilizing the interaction. The model was validated by two approaches. First, analysis of the oligomerization capacity of the N protein mutants performed with the mammalian two-hybrid system showed that both preservation of the helix structure and formation of the shared hydrophobic space are crucial for the interaction. Second, oligomerization was shown to be a prerequisite for the granular pattern of transiently expressed N protein in transfected cells. N protein trimerization was supported by three-dimensional reconstruction of the N protein by electron microscopy after negative staining. Finally, we discuss how N protein trimerization could occur.


Journal of Biological Chemistry | 2012

Obatoclax, saliphenylhalamide and gemcitabine inhibit influenza A virus infection

Oxana V. Denisova; Laura Kakkola; Lin Feng; Jakob Stenman; A. Nagaraj; Johanna Lampe; Bhagwan Yadav; Tero Aittokallio; Pasi Kaukinen; Tero Ahola; Olli Vapalahti; Anu Kantele; Janne Tynell; Ilkka Julkunen; Hannimari Kallio-Kokko; Henrik Paavilainen; Veijo Hukkanen; Richard M. Elliott; Jef K. De Brabander; Xavier Saelens; Denis E. Kainov

Background: Novel options should be developed for treatment of IAV infections. Results: Obatoclax, saliphenylhalamide, and gemcitabine target host factors and inhibit IAV and several other viruses infections. Conclusion: These compounds represent potent antiviral agents. Significance: These compounds could be exploited in treatment of severe viral infections. Influenza A viruses (IAVs) infect humans and cause significant morbidity and mortality. Different treatment options have been developed; however, these were insufficient during recent IAV outbreaks. Here, we conducted a targeted chemical screen in human nonmalignant cells to validate known and search for novel host-directed antivirals. The screen validated saliphenylhalamide (SaliPhe) and identified two novel anti-IAV agents, obatoclax and gemcitabine. Further experiments demonstrated that Mcl-1 (target of obatoclax) provides a novel host target for IAV treatment. Moreover, we showed that obatoclax and SaliPhe inhibited IAV uptake and gemcitabine suppressed viral RNA transcription and replication. These compounds possess broad spectrum antiviral activity, although their antiviral efficacies were virus-, cell type-, and species-specific. Altogether, our results suggest that phase II obatoclax, investigational SaliPhe, and FDA/EMEA-approved gemcitabine represent potent antiviral agents.


Journal of Medical Virology | 2013

Hepatitis C virus NS2 protease inhibits host cell antiviral response by inhibiting IKKε and TBK1 functions

Pasi Kaukinen; Maarit Sillanpää; Laura Nousiainen; Krister Melén; Ilkka Julkunen

Hepatitis C virus (HCV) encodes for several proteins that can interfere with host cell signaling and antiviral response. Previously, serine protease NS3/4A was shown to block host cell interferon (IFN) production by proteolytic cleavage of MAVS and TRIF, the adaptor molecules of the RIG‐I and TLR3 signaling pathways, respectively. This study shows that another HCV protease, NS2 can interfere efficiently with cytokine gene expression. NS2 and its proteolytically inactive mutant forms were able to inhibit type I and type III IFN, CCL5 and CXCL10 gene promoters activated by Sendai virus infection. However, the CXCL8 gene promoter was not inhibited by NS2. In addition, constitutively active RIG‐I (ΔRIG‐I), MAVS, TRIF, IKKε, and TBK1‐induced activation of IFN‐β promoter was inhibited by NS2. Cotransfection experiments with IKKε or TBK1 together with interferon regulatory factor 3 (IRF3) and HCV expression constructs revealed that NS2 in a dose‐dependent manner inhibited IKKε and especially TBK1‐induced IRF3 phosphorylation. GST pull‐down experiments with GST‐NS2 and in vitro‐translated and cell‐expressed IKKε and TBK1 demonstrated direct physical interactions of the kinases with NS2. Further evidence that the IKKε/TBK1 kinase complex is the target for NS2 was obtained from the observation that the constitutively active form of IRF3 (IRF3‐5D) activated readily IFN‐β promoter in the presence of NS2. The present study identified HCV NS2 as a potent interferon antagonist, and describes an explanation of how NS2 downregulates the major signaling pathways involved in the development of host innate antiviral responses. J. Med. Virol. 85:71–82, 2012.


Journal of General Virology | 2008

Hepatitis C virus proteins interfere with the activation of chemokine gene promoters and downregulate chemokine gene expression

Maarit Sillanpää; Pasi Kaukinen; Krister Melén; Ilkka Julkunen

The hepatitis C virus (HCV) non-structural (NS) 3/4A protein complex inhibits the retinoic acid inducible gene I (RIG-I) pathway by proteolytically cleaving mitochondria-associated CARD-containing adaptor protein Cardif, and this leads to reduced production of beta interferon (IFN-beta). This study examined the expression of CCL5 (regulated upon activation, normal T-cell expressed and secreted, or RANTES), CXCL8 (interleukin 8) and CXCL10 (IFN-gamma-activated protein 10, or IP-10) chemokine genes in osteosarcoma cell lines that inducibly expressed NS3/4A, NS4B, core-E1-E2-p7 and the entire HCV polyprotein. Sendai virus (SeV)-induced production of IFN-beta, CCL5, CXCL8 and CXCL10 was downregulated by the NS3/4A protein complex and by the full-length HCV polyprotein. Expression of NS3/4A and the HCV polyprotein reduced the binding of interferon regulatory factors (IRFs) 1 and 3 and, to a lesser extent, nuclear factor (NF)-kappaB (p65/p50) to their respective binding elements on the CXCL10 promoter during SeV infection. Furthermore, binding of IRF1 and IRF3 to the interferon-stimulated response element-like element, and of c-Jun and phosphorylated c-Jun to the activator protein 1 element of the CXCL8 promoter, was reduced when NS3/4A and the HCV polyprotein were expressed. In cell lines expressing NS3/4A and the HCV polyprotein, the subcellular localization of mitochondria was changed, and this was kinetically associated with the partial degradation of endogenous Cardif. These results indicate that NS3/4A alone or as part of the HCV polyprotein disturbs the expression of IRF1- and IRF3-regulated genes, as well as affecting mitogen-activated protein kinase kinase- and NF-kappaB-regulated genes.


Antiviral Research | 2016

Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses.

Finny S. Varghese; Pasi Kaukinen; Sabine Gläsker; Maxim M. Bespalov; Leena Hanski; Krister Wennerberg; Beate M. Kümmerer; Tero Ahola

Chikungunya virus (CHIKV) is an arthritogenic arbovirus of the Alphavirus genus, which has infected millions of people after its re-emergence in the last decade. In this study, a BHK cell line containing a stable CHIKV replicon with a luciferase reporter was used in a high-throughput platform to screen approximately 3000 compounds. Following initial validation, 25 compounds were chosen as primary hits for secondary validation with wild type and reporter CHIKV infection, which identified three promising compounds. Abamectin (EC50 = 1.5 μM) and ivermectin (EC50 = 0.6 μM) are fermentation products generated by a soil dwelling actinomycete, Streptomyces avermitilis, whereas berberine (EC50 = 1.8 μM) is a plant-derived isoquinoline alkaloid. They inhibited CHIKV replication in a dose-dependent manner and had broad antiviral activity against other alphaviruses--Semliki Forest virus and Sindbis virus. Abamectin and ivermectin were also active against yellow fever virus, a flavivirus. These compounds caused reduced synthesis of CHIKV genomic and antigenomic viral RNA as well as downregulation of viral protein expression. Time of addition experiments also suggested that they act on the replication phase of the viral infectious cycle.

Collaboration


Dive into the Pasi Kaukinen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maarit Sillanpää

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Krister Melén

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Tero Ahola

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge