Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pasquina Marzola is active.

Publication


Featured researches published by Pasquina Marzola.


Nature Medicine | 2008

A role for leukocyte-endothelial adhesion mechanisms in epilepsy

Paolo F. Fabene; Graciela Navarro Mora; Marianna Martinello; Barbara Rossi; Flavia Merigo; Linda Ottoboni; Simona Bach; Stefano Angiari; Donatella Benati; Asmaa Chakir; Lara Zanetti; Federica Schio; Antonio Osculati; Pasquina Marzola; Elena Nicolato; Jonathon W. Homeister; Lijun Xia; John B. Lowe; Rodger P. McEver; Francesco Osculati; Andrea Sbarbati; Eugene C. Butcher; Gabriela Constantin

The mechanisms involved in the pathogenesis of epilepsy, a chronic neurological disorder that affects approximately one percent of the world population, are not well understood. Using a mouse model of epilepsy, we show that seizures induce elevated expression of vascular cell adhesion molecules and enhanced leukocyte rolling and arrest in brain vessels mediated by the leukocyte mucin P-selectin glycoprotein ligand-1 (PSGL-1, encoded by Selplg) and leukocyte integrins α4β1 and αLβ2. Inhibition of leukocyte-vascular interactions, either with blocking antibodies or by genetically interfering with PSGL-1 function in mice, markedly reduced seizures. Treatment with blocking antibodies after acute seizures prevented the development of epilepsy. Neutrophil depletion also inhibited acute seizure induction and chronic spontaneous recurrent seizures. Blood-brain barrier (BBB) leakage, which is known to enhance neuronal excitability, was induced by acute seizure activity but was prevented by blockade of leukocyte-vascular adhesion, suggesting a pathogenetic link between leukocyte-vascular interactions, BBB damage and seizure generation. Consistent with the potential leukocyte involvement in epilepsy in humans, leukocytes were more abundant in brains of individuals with epilepsy than in controls. Our results suggest leukocyte-endothelial interaction as a potential target for the prevention and treatment of epilepsy.


Stem Cells | 2008

Efficient In Vitro Labeling of Human Neural Precursor Cells with Superparamagnetic Iron Oxide Particles: Relevance for In Vivo Cell Tracking

Margherita Neri; Claudio Maderna; Chiara Cavazzin; Vivien Deidda-Vigoriti; Letterio S. Politi; G. Scotti; Pasquina Marzola; Andrea Sbarbati; Angelo L. Vescovi; Angela Gritti

Recent studies have raised appealing possibilities of replacing damaged or lost neural cells by transplanting in vitro‐expanded neural precursor cells (NPCs) and/or their progeny. Magnetic resonance (MR) tracking of superparamagnetic iron oxide (SPIO)‐labeled cells is a noninvasive technique to track transplanted cells in longitudinal studies on living animals. Murine NPCs and human mesenchymal or hematopoietic stem cells can be efficiently labeled by SPIOs. However, the validation of SPIO‐based protocols to label human neural precursor cells (hNPCs) has not been extensively addressed. Here, we report the development and validation of optimized protocols using two SPIOs (Sinerem and Endorem) to label human hNPCs that display bona fide stem cell features in vitro. A careful titration of both SPIOs was required to set the conditions resulting in efficient cell labeling without impairment of cell survival, proliferation, self‐renewal, and multipotency. In vivo magnetic resonance imaging (MRI) combined with histology and confocal microscopy indicated that low numbers (5 × 103 to 1 × 104) of viable SPIO‐labeled hNPCs could be efficiently detected in the short term after transplantation in the adult murine brain and could be tracked for at least 1 month in longitudinal studies. By using this approach, we also clarified the impact of donor cell death to the MR signal. This study describes a simple protocol to label NPCs of human origin using SPIOs at optimized low dosages and demonstrates the feasibility of noninvasive imaging of labeled cells after transplantation in the brain; it also evidentiates potential limitations of the technique that have to be considered, particularly in the perspective of neural cell‐based clinical applications.


NeuroImage | 2003

Magnetic resonance imaging of changes elicited by status epilepticus in the rat brain: diffusion-weighted and T2-weighted images, regional blood volume maps, and direct correlation with tissue and cell damage.

P.F. Fabene; Pasquina Marzola; Andrea Sbarbati; M. Bentivoglio

The rat brain was investigated with structural and functional magnetic resonance imaging (MRI) 12 h after the arrest of pilocarpine-induced status epilepticus lasting 4 h. Histopathological data, obtained immediately after MRI analysis, were correlated with the images through careful evaluation of tissue shrinkage. Diffusion-weighted and T2-weighted imaging showed changes throughout the cerebral cortex, hippocampus, amygdala, and medial thalamus. However, only T2-weighted imaging, based on rapid acquisition relaxation-enhanced sequences, revealed in the cortex inhomogeneous hyperintensity that was highest in a band corresponding to layer V. Regional cerebral blood volume (rCBV) maps were generated using T2*-weighted gradient-echo images and an ultrasmall superparamagnetic iron oxide contrast agent. In the cortex, rCBV peaked in superficial and deep bands exhibiting a distribution complementary to the highest T2-weighted intensity. Selective rCBV increase was also documented in the hippocampus and subcortical structures. In tissue sections, alterations indicative of marked edema were found with Nissl staining in areas corresponding to the highest T2-weighted intensity. Degenerating neurons, revealed by FluoroJadeB histochemistry, were instead concentrated in tissue exhibiting hyperperfusion in rCBV maps, such as hippocampal subfields and dentate gyrus, cortical layers II/III and VI, and medial thalamus. The data indicate that:(i) T2-weighted imaging provides a sensitive tool to investigate edematous brain alterations that follow sustained seizures; (ii) rCBV maps reveal regional hyperperfusion; (iii) rCBV peaks in tissue exhibiting marked neurodegeneration, which may not be selectively revealed by structural MRI. The findings provide an interpretation of the brain response to sustained seizures revealed in vivo by different strategies of MRI analysis.


Clinical Cancer Research | 2005

Early antiangiogenic activity of SU11248 evaluated in vivo by dynamic contrast-enhanced magnetic resonance imaging in an experimental model of colon carcinoma.

Pasquina Marzola; Anna Degrassi; Laura Calderan; Paolo Farace; Elena Nicolato; Caterina Crescimanno; Marco Sandri; Anna Giusti; Enrico Pesenti; Andrea Terron; Andrea Sbarbati; Francesco Osculati

Purpose: To compare two dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) techniques in terms of their ability in assessing the early antiangiogenic effect of SU11248, a novel selective multitargeted tyrosine kinase inhibitor, that exhibits direct antitumor and antiangiogenic activity via inhibition of the receptor tyrosine kinases platelet-derived growth factor receptor, vascular endothelial growth factor receptor, KIT, and FLT3. Experimental Design: A s.c. tumor model of HT29 human colon carcinoma in athymic mice was used. Two DCE-MRI techniques were used based, respectively, on macromolecular [Gd-diethylenetriaminepentaacetic acid (DTPA)-albumin] and low molecular weight (Gd-DTPA) contrast agents. The first technique provided a quantitative measurement of transendothelial permeability and fractional plasma volume, accepted surrogate markers of tumor angiogenesis. With the second technique, we quantified the initial area under the concentration-time curve, which gives information related to tumor perfusion and vascular permeability. Experiments were done before and 24 hours after a single dose administration of SU11248. Results: The early antiangiogenic effect of SU11248 was detected by DCE-MRI with macromolecular contrast agent as a 42% decrease in vascular permeability measured in the tumor rim. The effect was also detected by DCE-MRI done with Gd-DTPA as a 31% decrease in the initial area under the concentration-time curve. Histologic slices showed a statistically significant difference in mean vessel density between the treated and control groups. Conclusions: The early antiangiogenic activity of SU11248 was detected in vivo by DCE-MRI techniques using either macromolecular or low molecular weight contrast agents. Because DCE-MRI techniques with low molecular weight contrast agents can be used in clinical studies, these results could be relevant for the design of clinical trials based on new paradigms.


Journal of Drug Targeting | 2003

In Vitro and In Vivo Study of Solid Lipid Nanoparticles Loaded with Superparamagnetic Iron Oxide

Elena Peira; Pasquina Marzola; Valerio Podio; Silvio Aime; Andrea Sbarbati; Maria Rosa Gasco

Solid Lipid Nanoparticles (SLN) are already under investigation as a pharmaceutical tool able to change the pharmacokinetic and biodistribution of carried molecules. SLN are able to target drugs to lymph after duodenal administration and to overcome the Blood Brain Barrier (BBB). In this study, superparamagnetic SLN have been prepared, have colloidal size, in vitro analysis showed relaxometric properties similar to Endorem®. In vivo Magnetic Resonance Imaging (MRI) of the central nervous system (CNS) with both SLN and Endorem® showed that superparamagnetic SLN have slower blood clearance than Endorem®. MRI data are consistent with CNS uptake of SLN lasting up to the end of the experiment (135 min). These findings confirm the ability of SLN to overcome the BBB; SLN might be used as a CNS MRI contrast agent.


Clinical Cancer Research | 2004

In Vivo Assessment of Antiangiogenic Activity of SU6668 in an Experimental Colon Carcinoma Model

Pasquina Marzola; Anna Degrassi; Laura Calderan; Paolo Farace; Caterina Crescimanno; Elena Nicolato; Anna Giusti; Enrico Pesenti; Andrea Terron; Andrea Sbarbati; Tinya Abrams; Lesley J. Murray; Francesco Osculati

Purpose: The purpose of this research was to assess in vivo by dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) the antiangiogenic effect of SU6668, an oral, small molecule inhibitor of the angiogenic receptor tyrosine kinases vascular endothelial growth factor receptor 2 (Flk-1/KDR), platelet-derived growth factor receptor, and fibroblast growth factor receptor 1. Experimental Design: A s.c. tumor model of HT29 human colon carcinoma in athymic mice was used. DCE-MRI with a macromolecular contrast agent was used to measure transendothelial permeability and fractional plasma volume, accepted surrogate markers of tumor angiogenesis. CD31 immunohistochemical staining was used for assessing microvessels density and vessels area. Experiments were performed after 24 h, and 3, 7, and 14 days of treatment. Results: DCE-MRI clearly detected the early effect (after 24 h of treatment) of SU6668 on tumor vasculature as a 51% and 26% decrease in the average vessel permeability measured in the tumor rim and core (respectively). A substantial decrease was also observed in average fractional plasma volume in the rim (59%) and core (35%) of the tumor. Histological results confirmed magnetic resonance imaging findings. After 3, 7, and 14 days of treatment, postcontrast magnetic resonant images presented a thin strip of strongly enhanced tissue at the tumor periphery; histology examination showed that this hyperenhanced ring corresponded to strongly vascularized tissue adjacent but external to the tumor. Histology also revealed a strong decrease in the thickness of peripheral viable tissue, with a greatly reduced vessel count. SU6668 greatly inhibited tumor growth, with 60% inhibition at 14 days of treatment. Conclusions: DCE-MRI detected in vivo the antiangiogenic efficacy of SU6668.


Optics Express | 2011

Multispectral Cerenkov luminescence tomography for small animal optical imaging

Antonello E. Spinelli; Chaincy Kuo; Brad W Rice; R. Calandrino; Pasquina Marzola; Andrea Sbarbati; Federico Boschi

Quite recently Cerenkov luminescence imaging (CLI) has been introduced as a novel pre-clinical imaging for the in vivo imaging of small animals such as mice. The CLI method is based on the detection of Cerenkov radiation (CR) generated by beta particles as they travel into the animal tissues with an energy such that Cerenkov emission condition is satisfied. This paper describes an image reconstruction method called multi spectral diffuse Cerenkov luminescence tomography (msCLT) in order to obtain 3D images from the detection of CR. The multispectral approach is based on a set of 2D planar images acquired using a number of narrow bandpass filters, and the distinctive information content at each wavelength is used in the 3D image reconstruction process. The proposed msCLT method was tested both in vitro and in vivo using 32P-ATP and all the images were acquired by using the IVIS 200 small animal optical imager (Caliper Life Sciences, Alameda USA). Source depth estimation and spatial resolution measurements were performed using a small capillary source placed between several slices of chicken breast. The theoretical Cerenkov emission spectrum and optical properties of chicken breast were used in the modelling of photon propagation. In vivo imaging was performed by injecting control nude mice with 10 MBq of 32P-ATP and the 3D tracer bio-distribution was reconstructed. Whole body MRI was acquired to provide an anatomical localization of the Cerenkov emission. The spatial resolution obtained from the msCLT reconstructed images of the capillary source showed that the FWHM is about 1.5 mm for a 6 mm depth. Co-registered MRI images showed that the Cerenkov emission regions matches fairly well with anatomical regions, such as the brain, heart and abdomen. Ex vivo imaging of the different organs such as intestine, brain, heart and ribs further confirms these findings. We conclude that in vivo 3D bio-distribution of a pure beta-minus emitting radiopharmaceutical such as 32P-ATP can be obtained using the msCLT reconstruction approach.


Small | 2014

Magneto‐Plasmonic Au‐Fe Alloy Nanoparticles Designed for Multimodal SERS‐MRI‐CT Imaging

Vincenzo Amendola; Stefano Scaramuzza; Lucio Litti; Moreno Meneghetti; Gaia Zuccolotto; Antonio Rosato; Elena Nicolato; Pasquina Marzola; Giulio Fracasso; Cristina Anselmi; Marcella Pinto; Marco Colombatti

Diagnostic approaches based on multimodal imaging are needed for accurate selection of the therapeutic regimens in several diseases, although the dose of administered contrast drugs must be reduced to minimize side effects. Therefore, large efforts are deployed in the development of multimodal contrast agents (MCAs) that permit the complementary visualization of the same diseased area with different sensitivity and different spatial resolution by applying multiple diagnostic techniques. Ideally, MCAs should also allow imaging of diseased tissues with high spatial resolution during surgical interventions. Here a new system based on multifunctional Au-Fe alloy nanoparticles designed to satisfy the main requirements of an ideal MCA is reported and their biocompatibility and imaging capability are described. The MCAs show easy and versatile surface conjugation with thiolated molecules, magnetic resonance imaging (MRI) and computed X-ray tomography (CT) signals for anatomical and physiological information (i.e., diagnostic and prognostic imaging), large Raman signals amplified by surface enhanced Raman scattering (SERS) for high sensitivity and high resolution intrasurgical imaging, biocompatibility, exploitability for in vivo use and capability of selective accumulation in tumors by enhanced permeability and retention effect. Taken together, these results show that Au-Fe nanoalloys are excellent candidates as multimodal MRI-CT-SERS imaging agents.


PLOS ONE | 2007

Pilocarpine-induced status epilepticus in rats involves ischemic and excitotoxic mechanisms.

Paolo F. Fabene; Flavia Merigo; Mirco Galiè; Donatella Benati; Paolo Bernardi; Paolo Farace; Elena Nicolato; Pasquina Marzola; Andrea Sbarbati

The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE) degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology.


Journal of the American Chemical Society | 2011

Magnetic Nanoparticles-Templated Assembly of Protein Subunits: A New Platform for Carbohydrate-Based MRI Nanoprobes

Elsa Valero; Stefano Tambalo; Pasquina Marzola; Mariano Ortega-Muñoz; Francisco Javier Lopez-Jaramillo; Francisco Santoyo-Gonzalez; de Dios López J; Juan J. Delgado; José J. Calvino; Rafael Cuesta; José M. Domínguez-Vera; Natividad Gálvez

A new approach for the preparation of carbohydrate-coated magnetic nanoparticles is reported. In a first step, we show that the pH-driven assembly-disassembly natural process that occurs in apoferritin protein is effective for the encapsulation of maghemite nanoparticles of different sizes: 4 and 6 nm. In a second step, we demonstrate that the presence of functional amine groups in the outer shell of apoferritin allows functionalization with two carbohydrates, N-acetyl-D-glucosamine and d-mannose. High-resolution electron microscopy (HREM), high angle annular dark field scanning electron microscopy (HAADF-STEM), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), and SQUID technique have been used to characterize the magnetic samples, termed herein Apomaghemites. The in vivo magnetic resonance imaging (MRI) studies showed the efficiency in contrasting images for these samples; that is, the r(2) NMR relaxivities are comparable with Endorem (a commercial superparamagnetic MRI contrast agent). The r(2) relaxivity values as well as the pre-contrast and post-contrast T(2)*-weighted images suggested that our systems could be used as perspective superparamagnetic contrast agents for magnetic resonance imaging (MRI). The carbohydrate-functionalized Apomaghemite nanoparticles retained their recognition abilities, as demonstrated by the strong affinity with their corresponding carbohydrate-binding lectins.

Collaboration


Dive into the Pasquina Marzola's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge