Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pat Gulhati is active.

Publication


Featured researches published by Pat Gulhati.


Cancer Research | 2011

mTORC1 and mTORC2 regulate EMT, motility and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways

Pat Gulhati; Kanika A. Bowen; Jianyu Liu; Payton D. Stevens; Piotr G. Rychahou; Min Chen; Eun Y. Lee; Heidi L. Weiss; Kathleen L. O'Connor; Tianyan Gao; B. Mark Evers

Activation of phosphoinositide 3-kinase (PI3K)/Akt signaling is associated with growth and progression of colorectal cancer (CRC). We have previously shown that the mTOR kinase, a downstream effector of PI3K/Akt signaling, regulates tumorigenesis of CRC. However, the contribution of mTOR and its interaction partners toward regulating CRC progression and metastasis remains poorly understood. We found that increased expression of mTOR, Raptor, and Rictor mRNA was noted with advanced stages of CRC, suggesting that mTOR signaling may be associated with CRC progression and metastasis. mTOR, Raptor, and Rictor protein levels were also significantly elevated in primary CRCs (stage IV) and their matched distant metastases compared with normal colon. Inhibition of mTOR signaling, using rapamycin or stable inhibition of mTORC1 (Raptor) and mTORC2 (Rictor), attenuated migration and invasion of CRCs. Furthermore, knockdown of mTORC1 and mTORC2 induced a mesenchymal-epithelial transition (MET) and enhanced chemosensitivity of CRCs to oxaliplatin. We observed increased cell-cell contact and decreased actin cytoskeletal remodeling concomitant with decreased activation of the small GTPases, RhoA and Rac1, upon inhibition of both mTORC1 and mTORC2. Finally, establishment of CRC metastasis in vivo was completely abolished with targeted inhibition of mTORC1 and mTORC2 irrespective of the site of colonization. Our findings support a role for elevated mTORC1 and mTORC2 activity in regulating epithelial-mesenchymal transition (EMT), motility, and metastasis of CRCs via RhoA and Rac1 signaling. These findings provide the rationale for including mTOR kinase inhibitors, which inhibit both mTORC1 and mTORC2, as part of the therapeutic regimen for CRC patients.


Cancer Letters | 2012

mTOR inhibitors in cancer therapy

Yekaterina Y. Zaytseva; Joseph D. Valentino; Pat Gulhati; B. Mark Evers

The mammalian target of rapamycin (mTOR) plays a key role in regulation of cellular metabolism, growth, and proliferation. The frequent hyperactivation of mTOR signaling makes it an attractive target for therapeutic intervention and has driven the development of a number of mTOR inhibitors. Encouraging data from preclinical studies have resulted in initiation of multiple clinical trials. Furthermore, combinational strategies are being studied in an effort to overcome resistance and enhance efficacy. Although additional studies are required to determine their specific role in the clinical setting, mTOR inhibitors remain a promising therapeutic option for the treatment of cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis

Piotr G. Rychahou; Junghee Kang; Pat Gulhati; Hung Q. Doan; L. Andy Chen; Shu-Yuan Xiao; Dai H. Chung; B. Mark Evers

Colorectal cancer is the second leading cause of cancer-related deaths in the United States. Understanding the distinct genetic and epigenetic changes contributing to the establishment and growth of metastatic lesions is crucial for the development of novel therapeutic strategies. In a search for key regulators of colorectal cancer metastasis establishment, we have found that the serine/threonine kinase Akt2, a known proto-oncogene, is highly expressed in late-stage colorectal cancer and metastatic tumors. Suppression of Akt2 expression in highly metastatic colorectal carcinoma cells inhibits their ability to metastasize in an experimental liver metastasis model. Overexpression of wild-type Akt1 did not restore metastatic potential in cells with downregulated Akt2, thus suggesting non-redundant roles for the individual Akt isoforms. In contrast, Akt2 overexpression in wild-type PTEN expressing SW480 colorectal cancer cells led to the formation of micrometastases; however, loss of PTEN is required for sustained formation of overt metastasis. Finally, we found that the consequence of PTEN loss and Akt2 overexpression function synergistically to promote metastasis. These results support a role for Akt2 overexpression in metastatic colorectal cancer and establish a mechanistic link between Akt2 overexpression and PTEN mutation in metastatic tumor establishment and growth. Taken together, these data suggest that Akt family members have distinct functional roles in tumor progression and that selective targeting of the PI3K/Akt2 pathway may provide a novel treatment strategy for colorectal cancer metastasis.


Clinical Cancer Research | 2009

Targeted inhibition of mammalian target of rapamycin signaling inhibits tumorigenesis of colorectal cancer

Pat Gulhati; Qingsong Cai; Jing Li; Jianyu Liu; Piotr G. Rychahou; Suimin Qiu; Eun Y. Lee; Scott R. Silva; Kanika A. Bowen; Tianyan Gao; B. Mark Evers

Purpose: The mammalian target of rapamycin (mTOR) kinase acts downstream of phosphoinositide 3-kinase/Akt to regulate cellular growth, metabolism, and cytoskeleton. Because ∼60% of sporadic colorectal cancers (CRC) exhibit high levels of activated Akt, we determined whether downstream mTOR signaling pathway components are overexpressed and activated in CRCs. Experimental Design: HCT116, KM20, Caco-2, and SW480 human CRC cells were used to determine the effects of pharmacologic (using rapamycin) or genetic (using RNAi) blockade of mTOR signaling on cell proliferation, apoptosis, cell cycle progression, and subcutaneous growth in vivo. Results: We show that the mTOR complex proteins mTOR, Raptor, and Rictor are overexpressed in CRC. Treatment with rapamycin significantly decreased proliferation of certain CRC cell lines (rapamycin sensitive), whereas other cell lines were resistant to its effects (rapamycin resistant). Transient siRNA-mediated knockdown of the mTORC2 protein, Rictor, significantly decreased proliferation of both rapamycin-sensitive and rapamycin-resistant CRC cells. Stable shRNA-mediated knockdown of both mTORC1 and mTORC2 decreased proliferation, increased apoptosis, and attenuated cell cycle progression in rapamycin-sensitive CRCs. Moreover, stable knockdown of both mTORC1 and mTORC2 decreased proliferation and attenuated cell cycle progression, whereas only mTORC2 knockdown increased apoptosis in rapamycin-resistant CRCs. Finally, knockdown of both mTORC1 and mTORC2 inhibited growth of rapamycin-sensitive and rapamycin-resistant CRCs in vivo when implanted as tumor xenografts. Conclusions: Targeted inhibition of the mTORC2 protein, Rictor, leads to growth inhibition and induces apoptosis in both rapamycin-sensitive and rapamycin-resistant CRCs, suggesting that selective targeting of mTORC2 may represent a novel therapeutic strategy for treatment of CRC.(Clin Cancer Res 2009;15(23):7207–16)


Journal of The American College of Surgeons | 2010

Novel Expression Patterns of PI3K/Akt/mTOR Signaling Pathway Components in Colorectal Cancer

Sara M. Johnson; Pat Gulhati; Bill A. Rampy; Yimei Han; Piotr G. Rychahou; Hung Q. Doan; Heidi L. Weiss; B. Mark Evers

BACKGROUND The phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway plays a critical role in the growth and progression of colorectal cancer (CRC). The purpose of our study was 2-fold: (1) to determine the expression levels of several key components of this pathway, including p85alpha, Akt1, Akt2, p-mTOR(Ser2448), and p-p70S6K(Thr389) in CRCs; and (2) to correlate the expression of these proteins with cancer stage and location (left versus right side). STUDY DESIGN Immunohistochemistry for p85alpha, Akt1, Akt2, p-mTOR(Ser2448), and p-p70S6K(Thr389) was performed on normal colon and CRCs from 154 patients. RESULTS All proteins investigated were significantly overexpressed in CRCs compared with matched normal colonic tissue from the same patient (p < 0.0001). PI3K pathway component proteins were moderately correlated across normal and malignant colon tissues; correlations tended to be stronger in normal tissues as compared with the same correlations in cancers. Expression levels of p85alpha were significantly higher in stage IV cancers than in stage I to III cancers (p = 0.0005). p85alpha expression was also significantly increased in the adjacent normal colonic mucosa of patients with stage IV CRC compared with earlier stages (p = 0.003). Finally, expression of Akt1, Akt2, and p-p70S6K(Thr389) was higher in left-sided CRCs compared with CRCs in the right colon (p = 0.007, p = 0.0008, and p = 0.04, respectively). CONCLUSIONS The PI3K/Akt/mTOR pathway components, p85alpha, Akt1, Akt2, p-mTOR(Ser2448), and p-p70S6K(Thr389) are highly overexpressed in CRCs, providing the rationale for targeting this pathway therapeutically in CRC patients. The increased expression of p85alpha in the adjacent normal mucosa of stage IV patients suggests an important field defect, which may contribute to the growth and progression of these cancers.


Cancer Research | 2012

Inhibition of Fatty Acid Synthase Attenuates CD44-Associated Signaling and Reduces Metastasis in Colorectal Cancer

Yekaterina Y. Zaytseva; Piotr G. Rychahou; Pat Gulhati; Victoria A. Elliott; William Mustain; Kathleen L. O'Connor; Andrew J. Morris; Manjula Sunkara; Heidi L. Weiss; Eun Y. Lee; B.M. Evers

Fatty acid synthase (FASN) and ATP-citrate lyase, key enzymes of de novo lipogenesis, are significantly upregulated and activated in many cancers and portend poor prognosis. Even though the role of lipogenesis in providing proliferative and survival advantages to cancer cells has been described, the impact of aberrant activation of lipogenic enzymes on cancer progression remains unknown. In this study, we found that elevated expression of FASN is associated with advanced stages of colorectal cancer (CRC) and liver metastasis, suggesting that it may play a role in progression of CRC to metastatic disease. Targeted inhibition of lipogenic enzymes abolished expression of CD44, a transmembrane protein associated with metastases in several cancers including CRC. In addition, inhibition of lipogenic enzymes and reduced expression of CD44 attenuated the activation of MET, Akt, FAK, and paxillin, which are known to regulate adhesion, migration, and invasion. These changes were consistent with an observed decrease in migration and adhesion of CRC cells in functional assays and with reorganization of actin cytoskeleton upon FASN inhibition. Despite the modest effect of FASN inhibition on tumor growth in xenografts, attenuation of lipogenesis completely abolished establishment of hepatic metastasis and formation of secondary metastasis. Together, our findings suggest that targeting de novo lipogenesis may be a potential treatment strategy for advanced CRC.


Oncogene | 2013

The deubiquitination enzyme USP46 functions as a tumor suppressor by controlling PHLPP-dependent attenuation of Akt signaling in colon cancer

Xin Li; Payton D. Stevens; Haihua Yang; Pat Gulhati; W Wang; B.M. Evers; Tianyan Gao

PH domain leucine-rich-repeats protein phosphatase (PHLPP) is a family of Ser/Thr protein phosphatases that serve as tumor suppressors by negatively regulating Akt. Our recent studies have demonstrated that the ubiquitin proteasome pathway has an important role in the downregulation of PHLPP in colorectal cancer. In this study, we show that the deubiquitinase USP46 stabilizes the expression of both PHLPP isoforms by reducing the rate of PHLPP degradation. USP46 binds to PHLPP and directly removes the polyubiquitin chains from PHLPP in vitro and in cells. Increased USP46 expression correlates with decreased ubiquitination and upregulation of PHLPP proteins in colon cancer cells, whereas knockdown of USP46 has the opposite effect. Functionally, USP46-mediated stabilization of PHLPP and the subsequent inhibition of Akt result in a decrease in cell proliferation and tumorigenesis of colon cancer cells in vivo. Moreover, reduced USP46 protein level is found associated with poor PHLPP expression in colorectal cancer patient specimens. Taken together, these results indentify a tumor suppressor role of USP46 in promoting PHLPP expression and inhibiting Akt signaling in colon cancer.


Carcinogenesis | 2012

Sorafenib enhances the therapeutic efficacy of rapamycin in colorectal cancers harboring oncogenic KRAS and PIK3CA

Pat Gulhati; Yekaterina Y. Zaytseva; Joseph D. Valentino; Payton D. Stevens; Ji Tae Kim; Takehiko Sasazuki; Senji Shirasawa; Eun Y. Lee; Heidi L. Weiss; Jianli Dong; Tianyan Gao; B. Mark Evers

Activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling is associated with tumorigenesis and metastasis of colorectal cancer (CRC). The mammalian target of rapamycin (mTOR) kinase, a downstream effector of PI3K/Akt signaling, regulates tumorigenesis and metastasis of CRCs, indicating that mTOR inhibition may have therapeutic potential. Notwithstanding, many cancers, including CRC, demonstrate resistance to the antitumorigenic effects of rapamycin. In this study, we show that inhibition of mTORC1 with rapamycin leads to feedback activation of PI3K/Akt and Ras-MAPK signaling, resulting in cell survival and possible contribution to rapamycin resistance. Combination with the multikinase inhibitor, sorafenib, abrogates rapamycin-induced activation of PI3K/Akt and Ras-MAPK signaling pathways. Combination of rapamycin with sorafenib synergistically inhibits proliferation of CRC cells. CRCs harboring coexistent KRAS and PIK3CA mutations are partially sensitive to either rapamycin or sorafenib monotherapy, but highly sensitive to combination treatment with rapamycin and sorafenib. Combination with sorafenib enhances therapeutic efficacy of rapamycin on induction of apoptosis and inhibition of cell-cycle progression, migration and invasion of CRCs. We demonstrate efficacy and safety of concomitant treatment with rapamycin and sorafenib at inhibiting growth of xenografts from CRC cells with coexistent mutations in KRAS and PIK3CA. The efficacy and tolerability of combined treatment with rapamycin and sorafenib provides rationale for use in treating CRC patients, particularly those with tumors harboring coexistent KRAS and PIK3CA mutations.


Journal of Gastrointestinal Surgery | 2009

An Analysis of Trends and Growth Factor Receptor Expression of GI Carcinoid Tumors

Kanika A. Bowen; Scott R. Silva; Jessica N. Johnson; Hung Q. Doan; Lindsey N. Jackson; Pat Gulhati; Suimin Qiu; Taylor S. Riall; B. Mark Evers

IntroductionThe purpose of our study was twofold: (1) to determine the incidence, patient and tumor characteristics, and outcome of patients with gastrointestinal carcinoid tumors using the Surveillance, Epidemiology and End Results (SEER) database, and (2) to delineate the expression pattern of growth factor receptors (GFRs) in carcinoid tumors.Materials and methodsThe SEER database search provided information on patients diagnosed with carcinoid tumors from 1990 to 2002. Carcinoid tumor sections (n = 46) were stained for the GFRs: epidermal growth factor receptor, insulin-like growth factor receptor (IGFR), vascular endothelial growth factor receptor (VEGFR), and HER-2/neu.ResultsOver the 12-year analysis period, 18,180 patients were identified with carcinoid tumors of the foregut, midgut, and hindgut; the incidence of carcinoid tumors increased ∼2-fold during this time period. Of the patients with carcinoid tumors, there was a trend of increased expression of VEGFR and IGFR, particularly in the foregut and midgut carcinoids. Analysis of the SEER database confirms that the incidence of carcinoid tumors is increasing with an approximate doubling in the number of carcinoid cases from 1990 to 2002. Furthermore, an increase in VEGFR and IGFR expression suggests that GFR inhibitors may be effective adjuvant therapy for carcinoid cancer.


Journal of Biological Chemistry | 2011

Characterization of Promoter Elements Regulating the Expression of the Human Neurotensin/Neuromedin N Gene

Xiaofu Wang; Pat Gulhati; Jing Li; Paul R. Dobner; Heidi L. Weiss; Courtney M. Townsend; B. Mark Evers

Expression of the gene encoding neurotensin/neuromedin N (NT/N) is mostly limited to the brain and specialized enteroendocrine N cells in the distal small intestine. We have identified key regulatory elements in the promoter region that are involved in human NT/N (hNT/N) gene expression in the novel human endocrine cell line, BON, which resembles intestinal N cells in several important aspects including NT/N precursor protein processing, ratios of different NT/N mRNA isoforms, and high levels of constitutive expression of the NT/N gene. In this study, we demonstrated multiple cis-regulatory elements including a proximal region containing a cAMP-responsive element (CRE)/AP-1-like element that binds both the AP-1 and CRE-binding protein (CREB)/ATF proteins (c-Jun, ATF-1, ATF-2, JunD, and CREB). Similar to the rat NT/N gene, this region is critical for constitutive hNT/N gene expression. Moreover, we identified a novel region that binds the orphan hormone receptor, NR2F2. We have demonstrated that the C terminus of NR2F2 strongly represses hNT/N transcription, whereas an N-terminal domain antagonizes this repressive effect. Regulation of NT/N expression by NR2F2 may have important consequences for lipid metabolism. We speculate that a complex interplay between the proximal CRE/AP-1-like motif and NR2F2 binding region exists to regulate hNT/N expression, which is critical for the high level of constitutive expression of NT/N in enteroendocrine cells. Finally, the BON cell line provides a unique model to characterize the factors regulating expression of the hNT/N gene and to better understand the mechanisms responsible for terminal differentiation of the N cell lineage in the gut.

Collaboration


Dive into the Pat Gulhati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tianyan Gao

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Eun Y. Lee

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Kanika A. Bowen

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

B.M. Evers

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Jing Li

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianli Dong

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge