Patric Seifert
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patric Seifert.
Journal of Geophysical Research | 2010
Gelsomina Pappalardo; Ulla Wandinger; Lucia Mona; Anja Hiebsch; Ina Mattis; Aldo Amodeo; Albert Ansmann; Patric Seifert; Holger Linné; Arnoud Apituley; Lucas Alados Arboledas; Dimitris Balis; Anatoli Chaikovsky; Giuseppe D'Amico; Ferdinando De Tomasi; Volker Freudenthaler; E. Giannakaki; Aldo Giunta; Ivan Grigorov; M. Iarlori; Fabio Madonna; Rodanthi-Elizabeth Mamouri; Libera Nasti; A. Papayannis; Aleksander Pietruczuk; Manuel Pujadas; V. Rizi; Francesc Rocadenbosch; Felicita Russo; Franziska Schnell
A strategy for European Aerosol Research Lidar Network (EARLINET) correlative measurements for Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) has been developed. These EARLINET correlative measurements started in June 2006 and are still in progress. Up to now, more than 4500 correlative files are available in the EARLINET database. Independent extinction and backscatter measurements carried out at high-performance EARLINET stations have been used for a quantitative comparison with CALIPSO level 1 data. Results demonstrate the good performance of CALIPSO and the absence of evident biases in the CALIPSO raw signals. The agreement is also good for the distribution of the differences for the attenuated backscatter at 532 nm ((CALIPSO-EARLINET)/EARLINET (%)), calculated in the 1–10 km altitude range, with a mean relative difference of 4.6%, a standard deviation of 50%, and a median value of 0.6%. A major Saharan dust outbreak lasting from 26 to 31 May 2008 has been used as a case study for showing first results in terms of comparison with CALIPSO level 2 data. A statistical analysis of dust properties, in terms of intensive optical properties (lidar ratios, Angstrom exponents, and color ratios), has been performed for this observational period. We obtained typical lidar ratios of the dust event of 49 ± 10 sr and 56 ± 7 sr at 355 and 532 nm, respectively. The extinction-related and backscatter-related Angstrom exponents were on the order of 0.15–0.17, which corresponds to respective color ratios of 0.91–0.95. This dust event has been used to show the methodology used for the investigation of spatial and temporal representativeness of measurements with polar-orbiting satellites.
Journal of Geophysical Research | 2010
Patric Seifert; Albert Ansmann; Ina Mattis; Ulla Wandinger; Matthias Tesche; Ronny Engelmann; Detlef Müller; Carlos Perez; Karsten Haustein
[1] More than 2300 observed cloud layers were analyzed to investigate the impact of aged Saharan dust on heterogeneous ice formation. The observations were performed with a polarization/Raman lidar at the European Aerosol Research Lidar Network site of Leipzig, Germany (51.3°N, 12.4°E) from February 1997 to June 2008. The statistical analysis is based on lidar‐derived information on cloud phase (liquid water, mixed phase, ice cloud) and cloud top height, cloud top temperature, and vertical profiles of dust mass concentration calculated with the Dust Regional Atmospheric Modeling system. Compared to dust‐free air masses, a significantly higher amount of ice‐containing clouds (25%–30% more) was observed for cloud top temperatures from �10°C to �20°C in air masses that contained mineral dust. The midlatitude lidar study is compared with our SAMUM lidar study of tropical stratiform clouds at Cape Verde in the winter of 2008. The comparison reveals that heterogeneous ice formation is much stronger over central Europe and starts at higher temperatures than over the tropical station. Possible reasons for the large difference are discussed.
Journal of Geophysical Research | 2008
Ina Mattis; D. Müller; A. Ansmann; Ulla Wandinger; J. Preißler; Patric Seifert; Matthias Tesche
[1] We present geometrical properties and seasonal variations of appearance of aerosol particle pollution in the free troposphere over the central European lidar site at Leipzig, Germany. The data set has been acquired with Raman lidar in the past 10 years in the framework of the German Lidar Network (1997–2000) and since 2000 in the framework of the European Aerosol Research Lidar Network (EARLINET). In summary we analyzed 1028 measurements. Geometrical depth of the pollution layers was � 1k m in 33% of all cases. Geometrical depths >5 km were found in 10% of all cases. Traces of particle pollution were detected up to the height of the tropopause. Forest-fire burning in North America causes intrusion of particles into the stratosphere. Seven hundred seventeen of all observations were carried out on the basis of a regular measurement schedule which allows us to establish a statistic on the frequency of particle transport in the free troposphere. In 43% of the regular measurements we observed pollution above the continental boundary layer. The lofted particle layers largely result from intercontinental long-range transport. We use backward trajectory analysis to identify the main source regions of the lofted pollution layers. In 19% of all regular measurements, free-tropospheric pollution was advected from North America. Forest-fire smoke from Canada and anthropogenic pollution from urban areas of the United States of America and Canada were the sources of the particle layers. We find a strong seasonal dependence of occurrence of these layers with a peak in June–August of each year. In a few cases we observed forest-fire smoke advected from Siberia and east Asia with winds from westerly directions. Pollution advected from areas north of 70N presents another transport channel. That pollution consists of Arctic haze or mixtures of haze with anthropogenic pollution. The main occurrence of such particle layers is around springtime of each year. Import of mineral dust from the Sahara represents another transport path. Most of such cases are observed during late springtime and summertime. Free-tropospheric pollution advected from east and southeast Europe and Russia presents one transport channel from within the Euro-Asian continent.
Geophysical Research Letters | 2010
Ulla Wandinger; Matthias Tesche; Patric Seifert; A. Ansmann; Detlef Müller; Dietrich Althausen
[1] We investigate the discrepancies in measurements of light extinction and extinction-to-backsatter ratio (lidar ratio) of desert dust with CALIPSO and ground-based lidar systems. Multiwavelength polarization Raman lidar measurements in the Saharan dust plume performed at Praia, Cape Verde, 15.0°N, 23.5°W, during SAMUM-2 in June 2008 were analyzed and compared to results of nearby CALIPSO overflights. The particle extinction coefficients and thus the optical depth are underestimated in the CALIPSO products by about 30% compared to Raman lidar measurements. A pre-defined lidar ratio of 40 sr at 532 nm is used for mineral dust in the CALIPSO algorithms in agreement with values of 41 ± 6 sr found from constrained retrievals. However, the ground-based lidar observations show much larger values of the order of 55 ± 10 sr. The discrepancies can be explained by the influence of multiple scattering which is ignored in the CALIPSO retrievals. Based on recent observations of the size distribution of dust particles from airborne in-situ observations during SAMUM-1, our model calculations show that the multiple-scattering-related underestimation of the extinction coefficient in the CALIPSO lidar signals ranges from 10%-40%. We propose a method to overcome this underestimation.
Journal of Geophysical Research | 2007
Patric Seifert; Albert Ansmann; Detlef Müller; Ulla Wandinger; Dietrich Althausen; Andrew J. Heymsfield; S. T. Massie; Carl Schmitt
0.25 ± 0.26 (NE) and 0.34 ± 0.29 (SW), 0.12 ± 0.09 km �1 (NE) and 0.12 ± 0.10 km �1 (SW), and 33 ± 9 sr (NE) and 29 ± 11 sr (SW), respectively. A functional dependency of the extinction coefficient of the tropical cirrus on temperature is presented. All findings are compared with several other cirrus lidar observations in the tropics, subtropics, and at midlatitudes. By contrasting the cirrus optical properties of the different seasons, a potential impact of anthropogenic particles on anvil cirrus optical properties was examined. Differences in the cirrus extinction-to-backscatter ratio suggest that NE monsoon anvil cirrus originating from deep-convection cumulus clouds had more irregularly shaped and thus slightly larger ice crystals than respective SW monsoon anvil cirrus. Because the meteorological conditions were found to vary significantly between the seasons, an unambiguous identification of the influence of Asian haze on cirrus optical properties is not possible.
Journal of Geophysical Research | 2012
Matthias Tesche; Paul Glantz; Christer Johansson; Michael Norman; Anja Hiebsch; Albert Ansmann; Dietrich Althausen; Ronny Engelmann; Patric Seifert
A volcanic ash plume that originated from the eruptions of Icelands Grimsvotn volcano in May 2011 was observed over the Nordic countries using a combination of satellite observations and ground-based measurements. The dispersion of the plume was investigated using London VAAC ash forecasts and MODIS observations. Hourly PM10 concentrations at air quality monitoring stations in the southern parts of Norway, Sweden, and Finland exceeded 100 mu g/m(3) for several hours. The FLEXPART dispersion model has been used to confirm the Icelandic origin of the sampled air masses. Column-integrated quantities from a Sun photometer and vertical profiles from a Raman lidar were used to estimate the ash concentration within an elevated layer over Stockholm. A lofted layer with an optical thickness of 0.3 at 532 nm passed Stockholm in the morning hours of 25 May 2011. Considering a realistic range of coarse-mode fractions and specific ash extinctions from the literature, an estimated range of maximum ash mass concentration of 150-340 mu g/m(3) was derived from the lidar measurements at an altitude of 2.8 km. The lower estimate of the lidar-derived ash mass concentrations within the planetary boundary layer was found to be in good agreement with surface observations of PM10.
Optics Express | 2011
Boyan Tatarov; Detlef Müller; Dong Ho Shin; Sung Kyun Shin; Ina Mattis; Patric Seifert; Young Min Noh; Y. J. Kim; Nobuo Sugimoto
We developed a novel measurement channel that utilizes Raman scattering from silicon dioxide (SiO2) quartz at an ultraviolet wavelength (361 nm). The excitation of the Raman signals is done at the primary wavelength of 355 nm emitted from a lidar instrument. In combination with Raman signals from scattering from nitrogen molecules, we may infer the mineral-quartz-related backscatter coefficient. This technique thus allows us to identify in a comparably direct way the mineral quartz content in mixed pollution plumes that consist, e.g., of a mix of desert dust and urban pollution. We tested the channel for the complex situation of East Asian pollution. We find good agreement of the inferred mineral-quartz-related backscatter coefficient to results obtained with another mineral quartz channel which was operated at 546 nm (primary emission wavelength at 532 nm), the functionality of which has already been shown for a lidar system in Tsukuba (Japan). The advantage of the novel channel is that it provides a better signal-to-noise ratio because of the shorter measurement wavelength.
Asia-pacific Journal of Atmospheric Sciences | 2013
Sung-Kyun Shin; Detlef Müller; Y. J. Kim; Boyan Tatarov; Dongho Shin; Patric Seifert; Young Min Noh
The linear particle depolarization ratios were retrieved from the observation with a multiwavelength Raman lidar at the Gwangju Institute of Science and Technology (GIST), Korea (35.11°N, 126.54°E). The measurements were carried out in spring (March to May) 2011. The transmission ratio measurements were performed to solve problems of the depolarization-dependent transmission at a receiver of the lidar and applied to correct the retrieved depolarization ratio of Asian dust at first time in Korea. The analyzed data from the GIST multiwavelength Raman lidar were classified into three categories according to the linear particle depolarization ratios, which are pure Asian dust on 21 March, the intermediate case which means Asian dust mixed with urban pollution on 13 May, and haze case on 10 April. The measured transmission ratios were applied to these cases respectively. We found that the transmission ratio is needed to be used to retrieve the accurate depolarization ratio of Asian dust and also would be useful to distinguish the mixed dust particles between intermediate case and haze. The particle depolarization ratios of pure Asian dust were approximately 0.25 at 532 nm and 0.14 at 532 nm for the intermediate case. The linear particle depolarization ratios of pure Asian dust observed with the GIST multiwavelength Raman lidar were compared to the linear particle depolarization ratios of Saharan dust observed in Morocco and Asian dust observed both in Japan and China.
Remote Sensing | 2007
Ina Mattis; Lucia Mona; Detlef Müller; Gelsomina Pappalardo; L. Alados-Arboledas; Giuseppe D'Amico; Aldo Amodeo; Arnoud Apituley; José María Baldasano; Christine Böckmann; Jens Bösenberg; Anatoli Chaikovsky; Adolfo Comeron; E. Giannakaki; Ivan Grigorov; Juan Luis Guerrero Rascado; Ove Gustafsson; M. Iarlori; Holger Linné; Valentin Mitev; Francisco Molero Menendez; Doina Nicolae; A. Papayannis; Carlos Pérez García-Pando; Maria Rita Perrone; Aleksander Pietruczuk; Jean-Philippe Putaud; François Ravetta; Alejandro W. Rodriguez; Patric Seifert
The European Aerosol Research Lidar Network (EARLINET) was established in 2000 to derive a comprehensive, quantitative, and statistically significant data base for the aerosol distribution on the European scale. At present, EARLINET consists of 25 stations: 16 Raman lidar stations, including 8 multi-wavelength Raman lidar stations which are used to retrieve aerosol microphysical properties. EARLINET performs a rigorous quality assurance program for instruments and evaluation algorithms. All stations measure simultaneously on a predefined schedule at three dates per week to obtain unbiased data for climatological studies. Since June 2006 the first backscatter lidar is operational aboard the CALIPSO satellite. EARLINET represents an excellent tool to validate CALIPSO lidar data on a continental scale. Aerosol extinction and lidar ratio measurements provided by the network will be particularly important for that validation. The measurement strategy of EARLINET is as follows: Measurements are performed at all stations within 80 km from the overpasses and additionally at the lidar station which is closest to the actually overpassed site. If a multi-wavelength Raman lidar station is overpassed then also the next closest 3+2 station performs a measurement. Altogether we performed more than 1000 correlative observations for CALIPSO between June 2006 and June 2007. Direct intercomparisons between CALIPSO profiles and attenuated backscatter profiles obtained by EARLINET lidars look very promising. Two measurement examples are used to discuss the potential of multi-wavelength Raman lidar observations for the validation and optimization of the CALIOP Scene Classification Algorithm. Correlative observations with multi-wavelength Raman lidars provide also the data base for a harmonization of the CALIPSO aerosol data and the data collected in future ESA lidar-in-space missions.
Tellus B | 2011
Ronny Engelmann; Albert Ansmann; Stefan Horn; Patric Seifert; Dietrich Althausen; Matthias Tesche; Michael Esselborn; Julia Fruntke; K. Lieke; Volker Freudenthaler; Silke Gross
A wind Doppler lidar was deployed next to three aerosol lidars during the SAMUM–2 campaign on the main island of Cape Verde. The effects of the differential heating of the island and the surrounding ocean and the orographic impact of the capital island Santiago and the small island on its luv side, Maio, are investigated. Horizontal and vertical winds were measured in the disturbed maritime boundary layer and compared to local radiosoundings. Lidar measurements from the research aircraft Falcon and a 3-D Large Eddy Simulation (LES) model were used in addition to study the heating effects on the scale of the islands. Indications are found that these effects can widely control the downward mixing from greater heights to the surface of African aerosols, mainly Saharan dust and biomass-burning smoke, which were detected in a complex layering over the Cape Verde region.