Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrice Dehais is active.

Publication


Featured researches published by Patrice Dehais.


Nature Communications | 2014

The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates

Camille Berthelot; Frédéric Brunet; Domitille Chalopin; Amélie Juanchich; Maria Bernard; Benjamin Noel; Pascal Bento; Corinne Da Silva; Karine Labadie; Adriana Alberti; Jean-Marc Aury; Alexandra Louis; Patrice Dehais; Philippe Bardou; Jérôme Montfort; Christophe Klopp; Cédric Cabau; Christine Gaspin; Gary H. Thorgaard; Mekki Boussaha; Edwige Quillet; René Guyomard; Delphine Galiana; Julien Bobe; Jean-Nicolas Volff; Carine Genet; Patrick Wincker; Olivier Jaillon; Hugues Roest Crollius

Vertebrate evolution has been shaped by several rounds of whole-genome duplications (WGDs) that are often suggested to be associated with adaptive radiations and evolutionary innovations. Due to an additional round of WGD, the rainbow trout genome offers a unique opportunity to investigate the early evolutionary fate of a duplicated vertebrate genome. Here we show that after 100 million years of evolution the two ancestral subgenomes have remained extremely collinear, despite the loss of half of the duplicated protein-coding genes, mostly through pseudogenization. In striking contrast is the fate of miRNA genes that have almost all been retained as duplicated copies. The slow and stepwise rediploidization process characterized here challenges the current hypothesis that WGD is followed by massive and rapid genomic reorganizations and gene deletions.


Nucleic Acids Research | 1999

PlantCARE, a plant cis-acting regulatory element database.

Stephane Rombauts; Patrice Dehais; Marc Van Montagu; Pierre Rouzé

PlantCARE is a database of plant cis- acting regulatory elements, enhancers and repressors. Besides the transcription motifs found on a sequence, it also offers a link to the EMBL entry that contains the full gene sequence as well as a description of the conditions in which a motif becomes functional. The information on these sites is given by matrices, consensus and individual site sequences on particular genes, depending on the available information. PlantCARE is a relational database available via the web at the URL: http://sphinx.rug.ac.be:8080/PlantCARE/


international conference on bioinformatics | 1999

Evaluation of gene prediction software using a genomic data set: application to Arabidopsis thaliana sequences

Nathalie Pavy; Stephane Rombauts; Patrice Dehais; Catherine Mathé; Davuluri V. V.Ramana; Philippe Leroy; Pierre Rouzé

MOTIVATION The annotation of the Arabidopsis thaliana genome remains a problem in terms of time and quality. To improve the annotation process, we want to choose the most appropriate tools to use inside a computer-assisted annotation platform. We therefore need evaluation of prediction programs with Arabidopsis sequences containing multiple genes. RESULTS We have developed AraSet, a data set of contigs of validated genes, enabling the evaluation of multi-gene models for the Arabidopsis genome. Besides conventional metrics to evaluate gene prediction at the site and the exon levels, new measures were introduced for the prediction at the protein sequence level as well as for the evaluation of gene models. This evaluation method is of general interest and could apply to any new gene prediction software and to any eukaryotic genome. The GeneMark.hmm program appears to be the most accurate software at all three levels for the Arabidopsis genomic sequences. Gene modeling could be further improved by combination of prediction software. AVAILABILITY The AraSet sequence set, the Perl programs and complementary results and notes are available at http://sphinx.rug.ac.be:8080/biocomp/napav/. CONTACT [email protected].


Bioinformatics | 2003

Automatic design of gene-specific sequence tags for genome-wide functional studies

Vincent Thareau; Patrice Dehais; Carine Serizet; Pierre Hilson; Pierre Rouzé; Sébastien Aubourg

MOTIVATION The availability of complete genome sequences allows the identification of short DNA segments that are specific to each annotated gene. Such unique gene sequence tags (GSTs) replace advantageously cDNAs in microarray transcript profiling experiments. In particular, probes corresponding to individual members of multigene families can be chosen carefully to avoid cross-hybridization events. RESULTS The Specific Primer and Amplicon Design Software (SPADS) was constructed to delineate the more divergent regions in each gene by comparing them with a completely annotated genome sequence and to select optimal primer pairs for the polymerase chain reaction amplification of one divergent region per gene. SPADS is a unique integrated tool to design specific GSTs from any public or private genome sequences and allows the user to fine-tune GST size and specificity. SPADS has been used to obtain probes for whole genome and family-wide transcript profiling, as well as inserts for gene-specific knock-out experiments. AVAILABILITY The GENOPLANTE SPADS source code and web interface are available upon request. The online version is accessible via http://genoplante-info.infobiogen.fr/spads and via http://oberon.fvms.ugent.be:8080/SPADS/


FEBS Letters | 1999

Evidence for an ancient chromosomal duplication in Arabidopsis thaliana by sequencing and analyzing a 400-kb contig at the APETALA2 locus on chromosome 41

Nancy Terryn; Leo Heijnen; Annick De Keyser; Martien Van Asseldonck; Rebecca De Clercq; Henk Verbakel; Jan Gielen; Marc Zabeau; Raimundo Villarroel; Taco Jesse; Pia Neyt; René Cornelis Josephus Hogers; Hilde Van Den Daele; Wilson Ardiles; Christine Schueller; Klaus F. X. Mayer; Patrice Dehais; Stephane Rombauts; Marc Van Montagu; Pierre Rouzé; Pieter Vos

As part of the European Scientists Sequencing Arabidopsis program, a contiguous region (396 607 bp) located on chromosome 4 around the APETALA2 gene was sequenced. Analysis of the sequence and comparison to public databases predicts 103 genes in this area, which represents a gene density of one gene per 3.85 kb. Almost half of the genes show no significant homology to known database entries. In addition, the first 45 kb of the contig, which covers 11 genes, is similar to a region on chromosome 2, as far as coding sequences are concerned. This observation indicates that ancient duplications of large pieces of DNA have occurred in Arabidopsis.


Nucleic Acids Research | 2014

Transcriptome-wide investigation of genomic imprinting in chicken

Laure Frésard; Sophie Leroux; Bertrand Servin; David Gourichon; Patrice Dehais; Magali San Cristobal; Nathalie Marsaud; Florence Vignoles; Bertrand Bed'Hom; Jean-Luc Coville; Farhad Hormozdiari; Catherine Beaumont; Tatiana Zerjal; Alain Vignal; Mireille Morisson; Sandrine Lagarrigue; Frédérique Pitel

Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken.


BMC Genomics | 2011

Analysis of BAC-end sequences in rainbow trout: Content characterization and assessment of synteny between trout and other fish genomes

Carine Genet; Patrice Dehais; Yniv Palti; Guangtu Gao; Frédérick Gavory; Patrick Wincker; Edwige Quillet; Mekki Boussaha

BackgroundRainbow trout (Oncorhynchus mykiss) are cultivated worldwide for aquaculture production and are widely used as a model species to gain knowledge of many aspects of fish biology. The common ancestor of the salmonids experienced a whole genome duplication event, making extant salmonids such as the rainbow trout an excellent model for studying the evolution of tetraploidization and re-diploidization in vertebrates. However, the lack of a reference genome sequence hampers research progress for both academic and applied purposes. In order to enrich the genomic tools already available in this species and provide further insight on the complexity of its genome, we sequenced a large number of rainbow trout BAC-end sequences (BES) and characterized their contents.ResultsA total of 176,485 high quality BES, were generated, representing approximately 4% of the trout genome. BES analyses identified 6,848 simple sequence repeats (SSRs), of which 3,854 had high quality flanking sequences for PCR primers design. The first rainbow trout repeat elements database (INRA RT rep1.0) containing 735 putative repeat elements was developed, and identified almost 59.5% of the BES database in base-pairs as repetitive sequence. Approximately 55% of the BES reads (97,846) had more than 100 base pairs of contiguous non-repetitive sequences. The fractions of the 97,846 non-repetitive trout BES reads that had significant BLASTN hits against the zebrafish, medaka and stickleback genome databases were 15%, 16.2% and 17.9%, respectively, while the fractions of the non-repetitive BES reads that had significant BLASTX hits against the zebrafish, medaka, and stickleback protein databases were 10.7%, 9.5% and 9.5%, respectively. Comparative genomics using paired BAC-ends revealed several regions of conserved synteny across all the fish species analyzed in this study.ConclusionsThe characterization of BES provided insights on the rainbow trout genome. The discovery of specific repeat elements will facilitate analyses of sequence content (e.g. for SNPs discovery and for transcriptome characterization) and future genome sequence assemblies. The numerous microsatellites will facilitate integration of the linkage and physical maps and serve as valuable resource for fine mapping QTL and positional cloning of genes affecting aquaculture production traits. Furthermore, comparative genomics through BES can be used for identifying positional candidate genes from QTL mapping studies, aid in future assembly of a reference genome sequence and elucidating sequence content and complexity in the rainbow trout genome.


Nucleic Acids Research | 2004

GeneFarm, structural and functional annotation of Arabidopsis gene and protein families by a network of experts

Sébastien Aubourg; Véronique Brunaud; Clémence Bruyère; Mark Cock; Richard Cooke; Annick Cottet; Arnaud Couloux; Patrice Dehais; Gilbert Deléage; Aymeric Duclert; Manuel Echeverria; Aimée Eschbach; Denis Falconet; Ghislain Filippi; Christine Gaspin; Christophe Geourjon; Jean-Michel Grienenberger; Guy Houlné; Elisabeth Jamet; Frédéric Lechauve; Olivier Leleu; Philippe Leroy; Régis Mache; Christian Meyer; Hafed Nedjari; Ioan Negrutiu; Valérie Orsini; Eric Peyretaillade; Cyril Pommier; Jeroen Raes

Genomic projects heavily depend on genome annotations and are limited by the current deficiencies in the published predictions of gene structure and function. It follows that, improved annotation will allow better data mining of genomes, and more secure planning and design of experiments. The purpose of the GeneFarm project is to obtain homogeneous, reliable, documented and traceable annotations for Arabidopsis nuclear genes and gene products, and to enter them into an added-value database. This re-annotation project is being performed exhaustively on every member of each gene family. Performing a family-wide annotation makes the task easier and more efficient than a gene-by-gene approach since many features obtained for one gene can be extrapolated to some or all the other genes of a family. A complete annotation procedure based on the most efficient prediction tools available is being used by 16 partner laboratories, each contributing annotated families from its field of expertise. A database, named GeneFarm, and an associated user-friendly interface to query the annotations have been developed. More than 3000 genes distributed over 300 families have been annotated and are available at http://genoplante-info.infobiogen.fr/Genefarm/. Furthermore, collaboration with the Swiss Institute of Bioinformatics is underway to integrate the GeneFarm data into the protein knowledgebase Swiss-Prot.


BMC Genomics | 2012

Fine mapping of complex traits in non-model species: using next generation sequencing and advanced intercross lines in Japanese quail

Laure Frésard; Sophie Leroux; Patrice Dehais; Bertrand Servin; Hélène Gilbert; Olivier Bouchez; Christophe Klopp; Cédric Cabau; Florence Vignoles; Katia Feve; Amélie Ricros; David Gourichon; Christian Diot; Sabine Richard; Christine Leterrier; Catherine Beaumont; Alain Vignal; Francis Minvielle; Frédérique Pitel

BackgroundAs for other non-model species, genetic analyses in quail will benefit greatly from a higher marker density, now attainable thanks to the evolution of sequencing and genotyping technologies. Our objective was to obtain the first genome wide panel of Japanese quail SNP (Single Nucleotide Polymorphism) and to use it for the fine mapping of a QTL for a fear-related behaviour, namely tonic immobility, previously localized on Coturnix japonica chromosome 1. To this aim, two reduced representations of the genome were analysed through high-throughput 454 sequencing: AFLP (Amplified Fragment Length Polymorphism) fragments as representatives of genomic DNA, and EST (Expressed Sequence Tag) as representatives of the transcriptome.ResultsThe sequencing runs produced 399,189 and 1,106,762 sequence reads from cDNA and genomic fragments, respectively. They covered over 434 Mb of sequence in total and allowed us to detect 17,433 putative SNP. Among them, 384 were used to genotype two Advanced Intercross Lines (AIL) obtained from three quail lines differing for duration of tonic immobility. Despite the absence of genotyping for founder individuals in the analysis, the previously identified candidate region on chromosome 1 was refined and led to the identification of a candidate gene.ConclusionsThese data confirm the efficiency of transcript and AFLP-sequencing for SNP discovery in a non-model species, and its application to the fine mapping of a complex trait. Our results reveal a significant association of duration of tonic immobility with a genomic region comprising the DMD (dystrophin) gene. Further characterization of this candidate gene is needed to decipher its putative role in tonic immobility in Coturnix.


Journal of Biotechnology | 2000

Gene prediction and gene classes in Arabidopsis thaliana.

Catherine Mathé; Patrice Dehais; Nathalie Pavy; Stephane Rombauts; Marc Van Montagu; Pierre Rouzé

Gene prediction methods for eukaryotic genomes still are not fully satisfying. One way to improve gene prediction accuracy, proven to be relevant for prokaryotes, is to consider more than one model of genes. Thus, we used our classification of Arabidopsis thaliana genes in two classes (CU(1) and CU(2)), previously delineated according to statistical features, in the GeneMark gene identification program. For each gene class, as well as for the two classes combined, a Markov model was developed (respectively, GM-CU(1), GM-CU(2) and GM-all) and then used on a test set of 168 genes to compare their respective efficiency. We concluded from this analysis that GM-CU(1) is more sensitive than GM-CU(2) which seems to be more specific to a gene type. Besides, GM-all does not give better results than GM-CU(1) and combining results from GM-CU(1) and GM-CU(2) greatly improve prediction efficiency in comparison with predictions made with GM-all only. Thus, this work confirms the necessity to consider more than one gene model for gene prediction in eukaryotic genomes, and to look for gene classes in order to build these models.

Collaboration


Dive into the Patrice Dehais's collaboration.

Top Co-Authors

Avatar

Frédérique Pitel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Vignal

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

David Gourichon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sophie Leroux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Leterrier

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bertrand Servin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Beaumont

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cécile Arnould

François Rabelais University

View shared research outputs
Researchain Logo
Decentralizing Knowledge