Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrice G. Guyenet is active.

Publication


Featured researches published by Patrice G. Guyenet.


Nature Reviews Neuroscience | 2006

The sympathetic control of blood pressure

Patrice G. Guyenet

Hypertension — the chronic elevation of blood pressure — is a major human health problem. In most cases, the root cause of the disease remains unknown, but there is mounting evidence that many forms of hypertension are initiated and maintained by an elevated sympathetic tone. This review examines how the sympathetic tone to cardiovascular organs is generated, and discusses how elevated sympathetic tone can contribute to hypertension.


Nature Neuroscience | 2004

Respiratory control by ventral surface chemoreceptor neurons in rats.

Daniel K. Mulkey; Ruth L. Stornetta; Matthew C. Weston; Johnny R. Simmons; Anson Parker; Douglas A. Bayliss; Patrice G. Guyenet

A long-standing theory posits that central chemoreception, the CNS mechanism for CO2 detection and regulation of breathing, involves neurons located at the ventral surface of the medulla oblongata (VMS). Using in vivo and in vitro electrophysiological recordings, we identify VMS neurons within the rat retrotrapezoid nucleus (RTN) that have characteristics befitting these elusive chemoreceptors. These glutamatergic neurons are vigorously activated by CO2 in vivo, whereas serotonergic neurons are not. Their CO2 sensitivity is unaffected by pharmacological blockade of the respiratory pattern generator and persists without carotid body input. RTN CO2-sensitive neurons have extensive dendrites along the VMS and they innervate key pontomedullary respiratory centers. In brainstem slices, a subset of RTN neurons with markedly similar morphology is robustly activated by acidification and CO2. Their pH sensitivity is intrinsic and involves a background K+ current. In short, the CO2-sensitive neurons of the RTN are good candidates for the long sought-after VMS chemoreceptors.


Nature | 2012

Wild-type microglia arrest pathology in a mouse model of Rett syndrome

Noël C. Derecki; James C. Cronk; Zhenjie Lu; Eric Xu; Stephen B. G. Abbott; Patrice G. Guyenet; Jonathan Kipnis

Rett syndrome is an X-linked autism spectrum disorder. The disease is characterized in most cases by mutation of the MECP2 gene, which encodes a methyl-CpG-binding protein. Although MECP2 is expressed in many tissues, the disease is generally attributed to a primary neuronal dysfunction. However, as shown recently, glia, specifically astrocytes, also contribute to Rett pathophysiology. Here we examine the role of another form of glia, microglia, in a murine model of Rett syndrome. Transplantation of wild-type bone marrow into irradiation-conditioned Mecp2-null hosts resulted in engraftment of brain parenchyma by bone-marrow-derived myeloid cells of microglial phenotype, and arrest of disease development. However, when cranial irradiation was blocked by lead shield, and microglial engraftment was prevented, disease was not arrested. Similarly, targeted expression of MECP2 in myeloid cells, driven by Lysmcre on an Mecp2-null background, markedly attenuated disease symptoms. Thus, through multiple approaches, wild-type Mecp2-expressing microglia within the context of an Mecp2-null male mouse arrested numerous facets of disease pathology: lifespan was increased, breathing patterns were normalized, apnoeas were reduced, body weight was increased to near that of wild type, and locomotor activity was improved. Mecp2+/− females also showed significant improvements as a result of wild-type microglial engraftment. These benefits mediated by wild-type microglia, however, were diminished when phagocytic activity was inhibited pharmacologically by using annexin V to block phosphatydilserine residues on apoptotic targets, thus preventing recognition and engulfment by tissue-resident phagocytes. These results suggest the importance of microglial phagocytic activity in Rett syndrome. Our data implicate microglia as major players in the pathophysiology of this devastating disorder, and suggest that bone marrow transplantation might offer a feasible therapeutic approach for it.


The Journal of Neuroscience | 2006

Expression of Phox2b by Brainstem Neurons Involved in Chemosensory Integration in the Adult Rat

Ruth L. Stornetta; Thiago S. Moreira; Ana C. Takakura; Bong Jin Kang; Darryl A. Chang; Gavin H. West; Jean-François Brunet; Daniel K. Mulkey; Douglas A. Bayliss; Patrice G. Guyenet

Central congenital hypoventilation syndrome is caused by mutations of the gene that encodes the transcription factor Phox2b. The syndrome is characterized by a severe form of sleep apnea attributed to greatly compromised central and peripheral chemoreflexes. In this study, we analyze whether Phox2b expression in the brainstem respiratory network is preferentially associated with neurons involved in chemosensory integration in rats. At the very rostral end of the ventral respiratory column (VRC), Phox2b was present in many VGlut2 (vesicular glutamate transporter 2) mRNA-containing neurons. These neurons were functionally identified as the respiratory chemoreceptors of the retrotrapezoid nucleus (RTN). More caudally in the VRC, many fewer neurons expressed Phox2b. These cells were not part of the central respiratory pattern generator (CPG), because they were typically cholinergic visceral motor neurons or catecholaminergic neurons (presumed C1 neurons). Phox2b was not detected in serotonergic neurons, in the A5, A6, and A7 noradrenergic cell groups nor within the main cardiorespiratory centers of the dorsolateral pons. Phox2b was expressed by many solitary tract nucleus (NTS) neurons including those that relay peripheral chemoreceptor information to the RTN. These and previous observations by others suggest that Phox2b is expressed by an uninterrupted chain of neurons involved in the integration of peripheral and central chemoreception (carotid bodies, chemoreceptor afferents, chemoresponsive NTS neurons projecting to VRC, RTN chemoreceptors). The presence of Phox2b in this circuit and its apparent absence from the respiratory CPG could explain why Phox2b mutations disrupt breathing automaticity during sleep without causing major impairment of respiration during waking.


The Journal of Comparative Neurology | 2002

Vesicular glutamate transporter DNPI/VGLUT2 mRNA is present in C1 and several other groups of brainstem catecholaminergic neurons

Ruth L. Stornetta; Charles P. Sevigny; Patrice G. Guyenet

The mouse glutamate vesicular transporter VGLUT2 has recently been characterized. The rat homolog of VGLUT2, differentiation‐associated Na+/Pi cotransporter (DNPI), was examined using a digoxigenin‐labeled DNPI/VGLUT2 cRNA probe in the present study to determine which, if any, of the various groups of pontine or medullary monoaminergic neurons express DNPI/VGLUT2 mRNA and, thus, are potentially glutamatergic. DNPI/VGLUT2 mRNA was widely distributed within the brainstem and seemed exclusively neuronal. By using a double in situ hybridization method, the presence of the mRNA for DNPI/VGLUT2 and glutamic acid decarboxylase (GAD)‐67 was mutually exclusive. By combining DNPI/VGLUT2 mRNA detection and conventional immunohistochemistry, DNPI/VGLUT2 mRNA was undetectable in lower brainstem cholinergic and serotonergic cells, but it was present in several tyrosine hydroxylase‐immunoreactive (TH‐ir) cell groups. DNPI/VGLUT2 mRNA was detected in most of the adrenergic neurons of the C1, C2, and C3 groups (75–80% of TH‐ir neurons), in the A2 noradrenergic group (80%), and in vast numbers of area postrema cells. Within the A1 region, many fewer TH‐ir cells contained DNPI/VGLUT2 (16%). Finally, DNPI/VGLUT2 mRNA was undetectable in the pontine noradrenergic cell groups (A5 and A6/locus coeruleus). In conclusion, the general pattern of DNPI/VGLUT2 expression and its exclusion from GABAergic, cholinergic, and serotonergic neurons supports the notion that DNPI/VGLUT2 mRNA identifies a subset of glutamatergic neurons in the lower brainstem. Within this region several catecholaminergic cell groups appear to be glutamatergic, including but not limited to the adrenergic cell groups C1–C3. Based on the present evidence, the noradrenergic cell groups of the pons (A5 and A6) do not contain either known vesicular glutamate transporter and are most likely not glutamatergic. J. Comp. Neurol. 444:191–206, 2002.


Respiration Physiology | 2000

Neural structures that mediate sympathoexcitation during hypoxia.

Patrice G. Guyenet

The sympathetic adjustments triggered by acute mild hypoxia (sympathetic chemoreflex) are initiated by activation of peripheral chemoreceptors whereas more severe hypoxia activates the sympathetic outflow via direct effects on the brainstem. In both cases the rostral ventrolateral medulla (RVLM) plays a critical role in these responses. The first part of this review briefly describes the general input-output properties of the presympathetic neurons of RVLM before focusing on the neural pathways leading to their excitation in response to peripheral chemoreceptor stimulation. The extent to which the central respiratory network contributes to the sympathetic chemoreflex is then discussed before briefly alluding to its role in obstructive sleep apnea and other pathologies. The second half of the review examines the direct effects of hypoxia on RVLM neurons and whether this region and the presympathetic neurons in particular qualify as a physiological central oxygen sensor. The literature is also examined in the context of cerebral ischemia, the Cushing response and the genesis of certain forms of hypertension.


The Journal of Comparative Neurology | 2002

Vesicular glutamate transporter DNPI/VGLUT2 is expressed by both C1 adrenergic and nonaminergic presympathetic vasomotor neurons of the rat medulla

Ruth L. Stornetta; Charles P. Sevigny; Ann M. Schreihofer; Diane L. Rosin; Patrice G. Guyenet

The main source of excitatory drive to the sympathetic preganglionic neurons that control blood pressure is from neurons located in the rostral ventrolateral medulla (RVLM). This monosynaptic input includes adrenergic (C1), peptidergic, and noncatecholaminergic neurons. Some of the cells in this pathway are suspected to be glutamatergic, but conclusive evidence is lacking. In the present study we sought to determine whether these presympathetic neurons express the vesicular glutamate transporter BNPI/VGLUT1 or the closely related gene DNPI, the rat homolog of the mouse vesicular glutamate transporter VGLUT2. Both BNPI/VGLUT1 and DNPI/VGLUT2 mRNAs were detected in the medulla oblongata by in situ hybridization, but only DNPI/VGLUT2 mRNA was present in the RVLM. Moreover, BNPI immunoreactivity was absent from the thoracic spinal cord lateral horn. DNPI/VGLUT2 mRNA was present in many medullary cells retrogradely labeled with Fluoro‐Gold from the spinal cord (T2; four rats). Within the RVLM, 79% of the bulbospinal C1 cells contained DNPI/VGLUT2 mRNA. Bulbospinal noradrenergic A5 neurons did not contain DNPI/VGLUT2 mRNA. The RVLM of six unanesthetized rats subjected to 2 hours of hydralazine‐induced hypotension contained tenfold more c‐Fos‐ir DNPI/VGLUT2 neurons than that of six saline‐treated controls. c‐Fos‐ir DNPI/VGLUT2 neurons included C1 and non‐C1 neurons (3:2 ratio). In seven barbiturate‐anesthetized rats, 16 vasomotor presympathetic neurons were filled with biotinamide and analyzed for the presence of tyrosine hydroxylase immunoreactivity and/or DNPI/VGLUT2 mRNA. Biotinamide‐labeled neurons included C1 and non‐C1 cells. Most non‐C1 (9/10) and C1 presympathetic cells (5/6) contained DNPI/VGLUT2 mRNA. In conclusion, DNPI/VGLUT2 is expressed by most blood pressure‐regulating presympathetic cells of the RVLM. The data suggest that these neurons may be glutamatergic and that the C1 adrenergic phenotype is one of several secondary phenotypes that are differentially expressed by subgroups of these cells. J. Comp. Neurol. 444:207–220, 2002.


The Journal of Neuroscience | 2007

TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity.

Daniel K. Mulkey; Edmund M. Talley; Ruth L. Stornetta; Audra R. Siegel; Gavin H. West; Xiangdong Chen; Neil Sen; Akshitkumar M. Mistry; Patrice G. Guyenet; Douglas A. Bayliss

Central respiratory chemoreception is the mechanism by which the CNS maintains physiologically appropriate pH and PCO2 via control of breathing. A prominent hypothesis holds that neural substrates for this process are distributed widely in the respiratory network, especially because many neurons that make up this network are chemosensitive in vitro. We and others have proposed that TASK channels (TASK-1, K2P3.1 and/or TASK-3, K2P9.1) may serve as molecular sensors for central chemoreception because they are highly expressed in multiple neuronal populations in the respiratory pathway and contribute to their pH sensitivity in vitro. To test this hypothesis, we examined the chemosensitivity of two prime candidate chemoreceptor neurons in vitro and tested ventilatory responses to CO2 using TASK channel knock-out mice. The pH sensitivity of serotonergic raphe neurons was abolished in TASK channel knock-outs. In contrast, pH sensitivity of neurons in the mouse retrotrapezoid nucleus (RTN) was fully maintained in a TASK null background, and pharmacological evidence indicated that a K+ channel with properties distinct from TASK channels contributes to the pH sensitivity of rat RTN neurons. Furthermore, the ventilatory response to CO2 was completely retained in single or double TASK knock-out mice. These data rule out a strict requirement for TASK channels or raphe neurons in central respiratory chemosensation. Furthermore, they indicate that a non-TASK K+ current contributes to chemosensitivity of RTN neurons, which are profoundly pH-sensitive and capable of driving respiratory output in response to local pH changes in vivo.


Clinical and Experimental Pharmacology and Physiology | 2002

The Baroreflex And Beyond: Control Of Sympathetic Vasomotor Tone By Gabaergic Neurons In The Ventrolateral Medulla

Ann M. Schreihofer; Patrice G. Guyenet

1.u2002Barosensitive, bulbospinal neurons in the rostral ventrolateral medulla (RVLM), which provide the major tonic excitatory drive to sympathetic vasomotor neurons, are prominently inhibited by GABA.


The Journal of Comparative Neurology | 2010

Central respiratory chemoreception.

Patrice G. Guyenet; Ruth L. Stornetta; Douglas A. Bayliss

By definition central respiratory chemoreceptors (CRCs) are cells that are sensitive to changes in brain PCO2 or pH and contribute to the stimulation of breathing elicited by hypercapnia or metabolic acidosis. CO2 most likely works by lowering pH. The pertinent proton receptors have not been identified and may be ion channels. CRCs are probably neurons but may also include acid‐sensitive glia and vascular cells that communicate with neurons via paracrine mechanisms. Retrotrapezoid nucleus (RTN) neurons are the most completely characterized CRCs. Their high sensitivity to CO2 in vivo presumably relies on their intrinsic acid sensitivity, excitatory inputs from the carotid bodies and brain regions such as raphe and hypothalamus, and facilitating influences from neighboring astrocytes. RTN neurons are necessary for the respiratory network to respond to CO2 during the perinatal period and under anesthesia. In conscious adults, RTN neurons contribute to an unknown degree to the pH‐dependent regulation of breathing rate, inspiratory, and expiratory activity. The abnormal prenatal development of RTN neurons probably contributes to the congenital central hypoventilation syndrome. Other CRCs presumably exist, but the supportive evidence is less complete. The proposed locations of these CRCs are the medullary raphe, the nucleus tractus solitarius, the ventrolateral medulla, the fastigial nucleus, and the hypothalamus. Several wake‐promoting systems (serotonergic and catecholaminergic neurons, orexinergic neurons) are also putative CRCs. Their contribution to central respiratory chemoreception may be behavior dependent or vary according to the state of vigilance. J. Comp. Neurol. 518:3883–3906, 2010.

Collaboration


Dive into the Patrice G. Guyenet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge