Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gavin H. West is active.

Publication


Featured researches published by Gavin H. West.


The Journal of Physiology | 2006

Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2‐sensitive neurons in rats

Ana C. Takakura; Thiago S. Moreira; Eduardo Colombari; Gavin H. West; Ruth L. Stornetta; Patrice G. Guyenet

The rat retrotrapezoid nucleus (RTN) contains pH‐sensitive neurons that are putative central chemoreceptors. Here, we examined whether these neurons respond to peripheral chemoreceptor stimulation and whether the input is direct from the solitary tract nucleus (NTS) or indirect via the respiratory network. A dense neuronal projection from commissural NTS (commNTS) to RTN was revealed using the anterograde tracer biotinylated dextran amine (BDA). Within RTN, 51% of BDA‐labelled axonal varicosities contained detectable levels of vesicular glutamate transporter‐2 (VGLUT2) but only 5% contained glutamic acid decarboxylase‐67 (GAD67). Awake rats were exposed to hypoxia (n= 6) or normoxia (n= 5) 1 week after injection of the retrograde tracer cholera toxin B (CTB) into RTN. Hypoxia‐activated neurons were identified by the presence of Fos‐immunoreactive nuclei. CommNTS neurons immunoreactive for both Fos and CTB were found only in hypoxia‐treated rats. VGLUT2 mRNA was detected in 92 ± 13% of these neurons whereas only 12 ± 9% contained GAD67 mRNA. In urethane–chloralose‐anaesthetized rats, bilateral inhibition of the RTN with muscimol eliminated the phrenic nerve discharge (PND) at rest, during hyperoxic hypercapnia (10% CO2), and during peripheral chemoreceptor stimulation (hypoxia and/or i.v. sodium cyanide, NaCN). RTN CO2‐activated neurons were recorded extracellularly in anaesthetized intact or vagotomized rats. These neurons were strongly activated by hypoxia (10–15% O2; 30 s) or by NaCN. Hypoxia and NaCN were ineffective in rats with carotid chemoreceptor denervation. Bilateral injection of muscimol into the ventral respiratory column 1.5 mm caudal to RTN eliminated PND and the respiratory modulation of RTN neurons. Muscimol did not change the threshold and sensitivity of RTN neurons to hyperoxic hypercapnia nor their activation by peripheral chemoreceptor stimulation. In conclusion, RTN neurons respond to brain P  CO 2 presumably via their intrinsic chemosensitivity and to carotid chemoreceptor activation via a direct glutamatergic pathway from commNTS that bypasses the respiratory network. RTN neurons probably contribute a portion of the chemical drive to breathe.


The Journal of Neuroscience | 2006

Expression of Phox2b by Brainstem Neurons Involved in Chemosensory Integration in the Adult Rat

Ruth L. Stornetta; Thiago S. Moreira; Ana C. Takakura; Bong Jin Kang; Darryl A. Chang; Gavin H. West; Jean-François Brunet; Daniel K. Mulkey; Douglas A. Bayliss; Patrice G. Guyenet

Central congenital hypoventilation syndrome is caused by mutations of the gene that encodes the transcription factor Phox2b. The syndrome is characterized by a severe form of sleep apnea attributed to greatly compromised central and peripheral chemoreflexes. In this study, we analyze whether Phox2b expression in the brainstem respiratory network is preferentially associated with neurons involved in chemosensory integration in rats. At the very rostral end of the ventral respiratory column (VRC), Phox2b was present in many VGlut2 (vesicular glutamate transporter 2) mRNA-containing neurons. These neurons were functionally identified as the respiratory chemoreceptors of the retrotrapezoid nucleus (RTN). More caudally in the VRC, many fewer neurons expressed Phox2b. These cells were not part of the central respiratory pattern generator (CPG), because they were typically cholinergic visceral motor neurons or catecholaminergic neurons (presumed C1 neurons). Phox2b was not detected in serotonergic neurons, in the A5, A6, and A7 noradrenergic cell groups nor within the main cardiorespiratory centers of the dorsolateral pons. Phox2b was expressed by many solitary tract nucleus (NTS) neurons including those that relay peripheral chemoreceptor information to the RTN. These and previous observations by others suggest that Phox2b is expressed by an uninterrupted chain of neurons involved in the integration of peripheral and central chemoreception (carotid bodies, chemoreceptor afferents, chemoresponsive NTS neurons projecting to VRC, RTN chemoreceptors). The presence of Phox2b in this circuit and its apparent absence from the respiratory CPG could explain why Phox2b mutations disrupt breathing automaticity during sleep without causing major impairment of respiration during waking.


The Journal of Neuroscience | 2009

Photostimulation of retrotrapezoid nucleus Phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats

Stephen B. G. Abbott; Ruth L. Stornetta; Michal G. Fortuna; Seth D. DePuy; Gavin H. West; Thurl E. Harris; Patrice G. Guyenet

The retrotrapezoid “nucleus” (RTN), located in the rostral ventrolateral medullary reticular formation, contains a bilateral cluster of ∼1000 glutamatergic noncatecholaminergic Phox2b-expressing propriobulbar neurons that are activated by CO2 in vivo and by acidification in vitro. These cells are thought to function as central respiratory chemoreceptors, but this theory still lacks a crucial piece of evidence, namely that stimulating these particular neurons selectively in vivo increases breathing. The present study performed in anesthetized rats seeks to test whether this expectation is correct. We injected into the left RTN a lentivirus that expresses the light-activated cationic channel ChR2 (channelrhodopsin-2) (H134R mutation; fused to the fluorescent protein mCherry) under the control of the Phox2-responsive promoter PRSx8. Transgene expression was restricted to 423 ± 38 Phox2b-expressing neurons per rat consisting of noncatecholaminergic and C1 adrenergic neurons (3:2 ratio). Photostimulation delivered to the RTN region in vivo via a fiberoptic activated the CO2-sensitive neurons vigorously, produced a long-lasting (t1/2 = 11 s) increase in phrenic nerve activity, and caused a small and short-lasting cardiovascular stimulation. Selective lesions of the C1 cells eliminated the cardiovascular response but left the respiratory stimulation intact. In rats with C1 cell lesions, the mCherry-labeled axon terminals originating from the transfected noncatecholaminergic neurons were present exclusively in the lower brainstem regions that contain the respiratory pattern generator. These results provide strong evidence that the Phox2b-expressing noncatecholaminergic neurons of the RTN region function as central respiratory chemoreceptors.


The Journal of Neuroscience | 2007

TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity.

Daniel K. Mulkey; Edmund M. Talley; Ruth L. Stornetta; Audra R. Siegel; Gavin H. West; Xiangdong Chen; Neil Sen; Akshitkumar M. Mistry; Patrice G. Guyenet; Douglas A. Bayliss

Central respiratory chemoreception is the mechanism by which the CNS maintains physiologically appropriate pH and PCO2 via control of breathing. A prominent hypothesis holds that neural substrates for this process are distributed widely in the respiratory network, especially because many neurons that make up this network are chemosensitive in vitro. We and others have proposed that TASK channels (TASK-1, K2P3.1 and/or TASK-3, K2P9.1) may serve as molecular sensors for central chemoreception because they are highly expressed in multiple neuronal populations in the respiratory pathway and contribute to their pH sensitivity in vitro. To test this hypothesis, we examined the chemosensitivity of two prime candidate chemoreceptor neurons in vitro and tested ventilatory responses to CO2 using TASK channel knock-out mice. The pH sensitivity of serotonergic raphe neurons was abolished in TASK channel knock-outs. In contrast, pH sensitivity of neurons in the mouse retrotrapezoid nucleus (RTN) was fully maintained in a TASK null background, and pharmacological evidence indicated that a K+ channel with properties distinct from TASK channels contributes to the pH sensitivity of rat RTN neurons. Furthermore, the ventilatory response to CO2 was completely retained in single or double TASK knock-out mice. These data rule out a strict requirement for TASK channels or raphe neurons in central respiratory chemosensation. Furthermore, they indicate that a non-TASK K+ current contributes to chemosensitivity of RTN neurons, which are profoundly pH-sensitive and capable of driving respiratory output in response to local pH changes in vivo.


The Journal of Neuroscience | 2007

Serotonergic Neurons Activate Chemosensitive Retrotrapezoid Nucleus Neurons by a pH-Independent Mechanism

Daniel K. Mulkey; Diane L. Rosin; Gavin H. West; Ana C. Takakura; Thiago S. Moreira; Douglas A. Bayliss; Patrice G. Guyenet

Serotonin activates respiration and enhances the stimulatory effect of CO2 on breathing. The present study tests whether the mechanism involves the retrotrapezoid nucleus (RTN), a group of medullary glutamatergic neurons activated by extracellular brain pH and presumed to regulate breathing. We show that the RTN is innervated by both medullary and pontine raphe and receives inputs from thyrotropin-releasing hormone (TRH) and substance P-expressing neurons. Coexistence of serotonin and substance P in terminals within RTN confirmed that lower medullary serotonergic neurons innervate RTN. In vivo, unilateral injection of serotonin into RTN stimulated inspiratory motor activity, and pH-sensitive RTN neurons were activated by iontophoretic application of serotonin or substance P. In brain slices, pH-sensitive RTN neurons were activated by serotonin, substance P, and TRH. The effect of serotonin in slices was ketanserin sensitive and persisted in the presence of glutamate, GABA, glycine, and purinergic ionotropic receptor antagonists. Serotonin and pH had approximately additive effects on the discharge rate of RTN neurons, both in slices and in vivo. In slices, serotonin produced an inward current with little effect on conductance and had no effect on the pH-induced current. We conclude that (1) RTN receives input from multiple raphe nuclei, (2) serotonin, substance P, and TRH activate RTN chemoreceptors, and (3) excitatory effects of serotonin and pH are mediated by distinct ionic conductances. Thus, RTN neurons presumably contribute to the respiratory stimulation caused by serotonergic neurons, but serotonin seems without effect on the cellular mechanism by which RTN neurons detect pH.


The Journal of Physiology | 2008

Selective lesion of retrotrapezoid Phox2b‐expressing neurons raises the apnoeic threshold in rats

Ana C. Takakura; Thiago S. Moreira; Ruth L. Stornetta; Gavin H. West; Justin M. Gwilt; Patrice G. Guyenet

Injection of the neurotoxin saporin–substance P (SSP‐SAP) into the retrotrapezoid nucleus (RTN) attenuates the central chemoreflex in rats. Here we ask whether these deficits are caused by the destruction of a specific type of interneuron that expresses the transcription factor Phox2b and is non‐catecholaminergic (Phox2b+TH−). We show that RTN contains around 2100 Phox2b+TH− cells. Injections of SSP‐SAP into RTN destroyed Phox2b+TH− neurons but spared facial motoneurons, catecholaminergic and serotonergic neurons and the ventral respiratory column caudal to the facial motor nucleus. Two weeks after SSP‐SAP, the apnoeic threshold measured under anaesthesia was unchanged when fewer than 57% of the Phox2b+TH− neurons were destroyed. However, destruction of 70 ± 3.5% of these cells was associated with a dramatic rise of the apnoeic threshold (from 5.6 to 7.9% end‐expiratory P  CO 2). In anaesthetized rats with unilateral lesions of around 70% of the Phox2b+TH− neurons, acute inhibition of the contralateral intact RTN with muscimol instantly eliminated phrenic nerve discharge (PND) but normal PND could usually be elicited by strong peripheral chemoreceptor stimulation (8/12 rats). Muscimol had no effect in rats with an intact contralateral RTN. In conclusion, the destruction of the Phox2b+TH− neurons is a plausible cause of the respiratory deficits caused by injection of SSP‐SAP into RTN. Two weeks after toxin injection, 70% of these cells must be killed to cause a severe attenuation of the central chemoreflex under anaesthesia. The loss of an even greater percentage of these cells would presumably be required to produce significant breathing deficits in the awake state.


The Journal of Physiology | 2009

Photostimulation of channelrhodopsin-2 expressing ventrolateral medullary neurons increases sympathetic nerve activity and blood pressure in rats.

Stephen B. G. Abbott; Ruth L. Stornetta; Carmela S. Socolovsky; Gavin H. West; Patrice G. Guyenet

To explore the specific contribution of the C1 neurons to blood pressure (BP) control, we used an optogenetic approach to activate these cells in vivo. A lentivirus that expresses channelrhodopsin‐2 (ChR2) under the control of the catecholaminergic neuron‐preferring promoter PRSx8 was introduced into the rostral ventrolateral medulla (RVLM). After 2–3 weeks, ChR2 was largely confined to Phox2b‐expressing neurons (89%). The ChR2‐expressing neurons were non‐GABAergic, non‐glycinergic and predominantly catecholaminergic (∼54%). Photostimulation of ChR2‐transfected RVLM neurons (473 nm, 20 Hz, 10 ms, ∼9 mW) increased BP (15 mmHg) and sympathetic nerve discharge (SND; 64%). Light pulses at 0.2–0.5 Hz evoked a large sympathetic nerve response (16 × baseline) followed by a silent period (1–2 s) during which another stimulus evoked a reduced response. Photostimulation activated most (75%) RVLM baroinhibited neurons sampled with 1/1 action potential entrainment to the light pulses and without accommodation during 20 Hz trains. RVLM neurons unaffected by either CO2 or BP were light‐insensitive. Bötzinger respiratory neurons were activated but their action potentials were not synchronized to the light pulses. Juxtacellular labelling of recorded neurons revealed that, of these three cell types, only the cardiovascular neurons expressed the transgene. In conclusion, ChR2 expression had no discernable effect on the putative vasomotor neurons at rest and was high enough to allow precise temporal control of their action potentials with light pulses. Photostimulation of RVLM neurons caused a sizable sympathoactivation and rise in blood pressure. These results provide the most direct evidence yet that the C1 neurons have a sympathoexcitatory function.


The Journal of Comparative Neurology | 2009

ACID-SENSITIVITY AND ULTRASTRUCTURE OF THE RETROTRAPEZOID NUCLEUS IN PHOX2B-EGFP TRANSGENIC MICE

Roman M. Lazarenko; Teresa A. Milner; Seth D. DePuy; Ruth L. Stornetta; Gavin H. West; Justin A. Kievits; Douglas A. Bayliss; Patrice G. Guyenet

The retrotrapezoid nucleus (RTN) contains noncholinergic noncatecholaminergic glutamatergic neurons that express the transcription factor Phox2b (chemically coded or “cc” RTN neurons). These cells regulate breathing and may be central chemoreceptors. Here we explore their ultrastructure and their acid sensitivity by using two novel BAC eGFP‐Phox2b transgenic mice (B/G, GENSAT JX99) in which, respectively, 36% and 100% of the cc RTN neurons express the transgene in complete or partial anatomical isolation from other populations of eGFP neurons. All but one of the eGFP‐labeled RTN neurons recorded in these mice were acid activated in slices. These cells contained VGLUT2 mRNA, and 50% contained preprogalanin mRNA (determined by single‐cell PCR in the B/G mouse). Two neuronal subgroups were revealed, which differed in discharge rate at pH 7.3 (type I ∼2; type II ∼4 Hz) and the degree of alkalization that silenced the cells (type I 7.4–7.6, type II 7.8–8.0). Medial to the RTN, C1 neurons recorded in a tyrosine hydroxylase‐GFP mouse were pH insensitive between pH 6.9 and pH 7.5. Ultrastructural studies demonstrated that eGFP‐labeled RTN neurons were surrounded by numerous capillaries and were often in direct contact with glial cells, pericytes, and the basement membrane of capillaries. Terminals contacting large proximal eGFP dendrites formed mainly symmetric, likely inhibitory, synapses. Terminals on more distal eGFP dendrites formed preferentially asymmetric, presumably excitatory, synapses. In sum, C1 cells are pH insensitive, whereas cc RTN neurons are uniformly acid sensitive. The RTN neurons receive inhibitory and excitatory synaptic inputs and may have unfettered biochemical interactions with glial cells and the local microvasculature. J. Comp. Neurol. 517:69–86, 2009.


The Journal of Comparative Neurology | 2007

Central nervous system distribution of the transcription factor Phox2b in the adult rat

B.J. Kang; Darryl A. Chang; D.D. MacKay; Gavin H. West; Thiago S. Moreira; Ana C. Takakura; Justin M. Gwilt; Patrice G. Guyenet; Ruth L. Stornetta

Phox2b is required for development of the peripheral autonomic nervous system and a subset of cranial nerves and lower brainstem nuclei. Phox2b mutations in man cause diffuse autonomic dysfunction and deficits in the automatic control of breathing. Here we study the distribution of Phox2b in the adult rat hindbrain to determine whether this protein is selectively expressed by neurons involved in respiratory and autonomic control. In the medulla oblongata, Phox2b‐immunoreactive nuclei were present in the dorsal vagal complex, intermediate reticular nucleus, dorsomedial spinal trigeminal nucleus, nucleus ambiguus, catecholaminergic neurons, and retrotrapezoid nucleus (RTN). Phox2b was expressed by both central excitatory relays of the sympathetic baroreflex (nucleus of the solitary tract and C1 neurons) but not by the inhibitory relay of this reflex. Phox2b was absent from the ventral respiratory column (VRC) caudal to RTN and rare within the parabrachial nuclei. In the pons, Phox2b was confined to cholinergic efferent neurons (salivary, vestibulocochlear) and noncholinergic peritrigeminal neurons. Rostral to the pons, Phox2b was detected only in the oculomotor complex. In adult rats, Phox2b is neither a comprehensive nor a selective marker of hindbrain autonomic pathways. This marker identifies a subset of hindbrain neurons that control orofacial movements (dorsomedial spinal trigeminal nucleus, pontine peritrigeminal neurons), balance and auditory function (vestibulocochlear efferents), the eyes, and both divisions of the autonomic efferent system. Phox2b is virtually absent from the respiratory rhythm and pattern generator (VRC and dorsolateral pons) but is highly expressed by neurons involved in the chemical drive and reflex regulation of this oscillator. J. Comp. Neurol. 503:627–641, 2007.


The Journal of Neuroscience | 2008

Botzinger expiratory-augmenting neurons and the parafacial respiratory group.

Michal G. Fortuna; Gavin H. West; Ruth L. Stornetta; Patrice G. Guyenet

In neonatal rat brains in vitro, the rostral ventral respiratory column (rVRC) contains neurons that burst just before the phrenic nerve discharge (PND) and rebound after inspiration (pre-I neurons). These neurons, called parafacial respiratory group (pfRG), have been interpreted as a master inspiratory oscillator, an expiratory rhythm generator or simply as neonatal precursors of retrotrapezoid (RTN) chemoreceptor neurons. pfRG neurons have not been identified in adults, and their phenotype is unknown. Here, we confirm that the rVRC normally lacks pre-I neurons in adult anesthetized rats. However, we show that, during hypercapnic hypoxia, a population of rVRC expiratory-augmenting (E-AUG) neurons consistently develops a pre-I discharge. These cells reside in the Bötzinger region of the rVRC, they express glycine-transporter-2, and their axons arborize throughout the VRC. Hypoxia triggers an identical pre-I pattern in retroambigual expiratory bulbospinal neurons, but this pattern is not elicited in Bötzinger expiratory-decrementing neurons, Bötzinger inspiratory neurons, RTN neurons, and blood pressure-regulating neurons. In conclusion, under hypoxia in vivo, abdominal expiratory premotor neurons of adult rats develop a pre-I pattern reminiscent of that observed in neonate brainstems in vitro. In the rVRC of adult rats, pre-I cells include selected rhythmogenic neurons (glycinergic Bötzinger neurons) but not RTN chemoreceptors. We suggest that the pfRG may not be an independent rhythm generator but a heterogeneous collection of E-AUG neurons (glycinergic Bötzinger neurons, possibly facial motor and premotor neurons), the discharge of which becomes preinspiratory under specific experimental conditions resulting from, in part, a prolonged and intensified activity of postinspiratory neurons.

Collaboration


Dive into the Gavin H. West's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge