Patrícia A. Dombrowski
Federal University of Paraná
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrícia A. Dombrowski.
Neuroscience | 2008
M.T. Tadaiesky; Patrícia A. Dombrowski; C.P. Figueiredo; E. Cargnin-Ferreira; C. Da Cunha; Reinaldo N. Takahashi
In addition to classic motor symptoms, Parkinsons disease (PD) is characterized by cognitive and emotional deficits, which have been demonstrated to precede motor impairments. The present study addresses the question of whether a partial degeneration of dopaminergic neurons using 6-hydroxydopamine (6-OHDA) in rats is able to induce premotor behavioral signs. The time-course of nigrostriatal damage was evaluated by tyrosine hydroxylase immunohistochemistry and the levels of dopamine, noradrenaline, and 5-HT in various brain regions were analyzed by high performance liquid chromatography (HPLC). Behavioral tests that assessed a variety of psychological functions, including locomotor activity, emotional reactivity and depression, anxiety and memory were conducted on 6-OHDA lesioned rats. Bilateral infusion of 6-OHDA in the striatum of rats caused early (1 week) damage of dopaminergic terminals in striatum and in cell bodies in substantia nigra pars compacta. The nigrostriatal lesion was accompanied by early loss of dopamine in the striatum, which remained stable through a 3-week period of observation. In addition, a late (3 weeks) loss of dopamine in the prefrontal cortex, but not in the hippocampus, was seen. Additional noradrenergic and serotonergic alterations were observed after 6-OHDA administration. The results indicated that 6-OHDA lesioned rats show decreased sucrose consumption and an increased immobility time in the forced swimming test, an anhedonic-depressive-like effect. In addition, an anxiogenic-like activity in the elevated plus maze test and cognitive impairments were observed on the cued version of the Morris water maze and social recognition tests. These findings suggest that partial striatal dopaminergic degeneration and parallel dopaminergic, noradrenergic and serotonergic alterations in striatum and prefrontal cortex may have caused the emotional and cognitive deficits observed in this rat model of early phase PD.
Behavioural Brain Research | 2009
Claudio Da Cunha; Evellyn Claudia Wietzikoski; Patrícia A. Dombrowski; Mariza Bortolanza; Lucélia Mendes dos Santos; Suelen Lucio Boschen; Edmar Miyoshi
In the present review we propose a model to explain the role of the basal ganglia in sensorimotor and cognitive functions based on a growing body of behavioural, anatomical, physiological, and neurochemical evidence accumulated over the last decades. This model proposes that the body and its surrounding environment are represented in the striatum in a fragmented and repeated way, like a mosaic consisting of the fragmented images of broken mirrors. Each fragment forms a functional unit representing articulated parts of the body with motion properties, objects of the environment which the subject can approach or manipulate, and locations the subject can move to. These units integrate the sensory properties and movements related to them. The repeated and widespread distribution of such units amplifies the combinatorial power of the associations among them. These associations depend on the phasic release of dopamine in the striatum triggered by the saliency of stimuli and will be reinforced by the rewarding consequences of the actions related to them. Dopamine permits synaptic plasticity in the corticostriatal synapses. The striatal units encoding the same stimulus/action send convergent projections to the internal segment of the globus pallidus (GPi) and to the substantia nigra pars reticulata (SNr) that stimulate or hold the action through a thalamus-frontal cortex pathway. According to this model, this is how the basal ganglia select actions based on environmental stimuli and store adaptive associations as nondeclarative memories such as motor skills, habits, and memories formed by Pavlovian and instrumental conditioning.
Journal of Neuroscience Methods | 2008
Angela B. Reksidler; Marcelo Meira Santos Lima; Patrícia A. Dombrowski; Monica L. Andersen; Silvio M. Zanata; Roberto Andreatini; Sergio Tufik; Maria A.B.F. Vital
Different Parkinsons disease (PD) animal models reproduce the early phase of the disease, which deny the possible existence of a synergic effect of consecutive insults to the dopaminergic neurons. We proposed a novel protocol of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) nigrostriatal lesion, which consists in repeated MPTP intranigral administrations intending to differentiate effects of a single lesion in relation to repeated lesions. For this purpose, a schedule of 3-day intervals between the MPTP administrations, totalizing 3 infusions in 9 days were adopted. A persistent locomotor deficit was produced after the 2nd infusion, remaining until the last time-point. Tyrosine hydroxylase (TH) immunoreactive neurons were reduced in 50% 1 day after the 1st infusion and the neuronal loss remained constant even after the 2nd and 3rd MPTP infusions. In parallel, (TH) protein expression in the substantia nigra pars compacta (SNpc) revealed to be a sensitive target for MPTP, once it was found to be down-regulated immediately after the 1st MPTP exposure until the last time-point. These findings corroborate the concept of an early phase model of PD elicited by MPTP even when this neurotoxin was used according to the protocol currently proposed. The current protocol provided relevant insights about TH expression and irreversible locomotor impairment.
Behavioural Brain Research | 2013
Patrícia A. Dombrowski; Tiago V. Maia; Suelen Lucio Boschen; Mariza Bortolanza; Etieli Wendler; Rainer K.W. Schwarting; Marcus Lira Brandão; Philip Winn; Claudio Da Cunha
We conducted an experiment in which hedonia, salience and prediction error hypotheses predicted different patterns of dopamine (DA) release in the striatum during learning of conditioned avoidance responses (CARs). The data strongly favor the latter hypothesis. It predicts that during learning of the 2-way active avoidance CAR task, positive prediction errors generated when rats do not receive an anticipated footshock (which is better than expected) cause DA release that reinforces the instrumental avoidance action. In vivo microdialysis in the rat striatum showed that extracellular DA concentration increased during early CAR learning and decreased throughout training returning to baseline once the response was well learned. In addition, avoidance learning was proportional to the degree of DA release. Critically, exposure of rats to the same stimuli but in an unpredictable, unavoidable, and inescapable manner, did not produce alterations from baseline DA levels as predicted by the prediction error but not hedonic or salience hypotheses. In addition, rats with a partial lesion of substantia nigra DA neurons, which did not show increased DA levels during learning, failed to learn this task. These data represent clear and unambiguous evidence that it was the factor positive prediction error, and not hedonia or salience, which caused increase in the tonic level of striatal DA and which reinforced learning of the instrumental avoidance response.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2009
Katia Sabrina Paludo; Stellee Marcela Petris Biscaia; Olga Meiri Chaim; Michel Fleith Otuki; Katya Naliwaiko; Patrícia A. Dombrowski; Célia Regina Cavichiolo Franco; Silvio Sanches Veiga
Accidents involving Brown spider (Loxosceles sp.) venom produce a massive inflammatory response in injured region. This venom has a complex mixture of different toxins, and the dermonecrotic toxin is the major contributor to toxic effects. The ability of Loxosceles intermedia venom and a recombinant isoform of dermonecrotic toxin to induce edema and increase in vascular permeability was investigated. These toxins were injected into hind paws and caused a marked dose and time-dependent edema and increase in vascular permeability in mice. Furthermore, the enzymatic activity of venom toxins may be primal for these effects. A mutated recombinant isoform of dermonecrotic toxin, that has only residual enzymatic activity, was not able to induce these inflammatory events. Besides the previous heating of toxins markedly reduced the paw edema and vascular permeability showing that thermolabile constituents can trigger these effects. In addition, the ability of these venom toxins to evoke inflammatory events was partially reduced in compound 48/80-pretreated animals, suggesting that mast cells may be involved in these responses. Pretreating mice with histamine (prometazine and cetirizine) and serotonin (methysergide) receptor antagonists significantly attenuated toxins induced edema and vascular permeability. Moreover, HPLC analysis of whole venom showed the presence of histamine sufficient to induce inflammatory responses. In conclusion, these inflammatory events may result from the activation of mast cells, which in turn release bioamines and may be related to intrinsic histamine content of venom.
Neurobiology of Learning and Memory | 2010
Mariza Bortolanza; Evellyn Claudia Wietzikoski; Suelen Lucio Boschen; Patrícia A. Dombrowski; Mary P. Latimer; Duncan A.A. MacLaren; Philip Winn; Claudio Da Cunha
The pedunculopontine tegmental nucleus (PPTg) targets nuclei in the basal ganglia, including the substantia nigra pars compacta (SNc), in which neuronal loss occurs in Parkinsons disease, a condition in which patients show cognitive as well as motor disturbances. Partial loss and functional abnormalities of neurons in the PPTg are also associated with Parkinsons disease. We hypothesized that the interaction of PPTg and SNc might be important for cognitive impairments and so investigated whether disrupting the connections between the PPTg and SNc impaired learning of a conditioned avoidance response (CAR) by male Wistar rats. The following groups were tested: PPTg unilateral; SNc unilateral; PPTg-SNc ipsilateral (ipsilateral lesions in PPTg and SNc); PPTg-SNc contralateral (contralateral lesions in PPTg and SNc); sham lesions (of each type). SNc lesions were made with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine HCl (MPTP, 0.6micromol); PPTg lesions with ibotenate (24nmol). After recovery, all rats underwent 50-trial sessions of 2-way active avoidance conditioning for 3 consecutive days. Rats with unilateral lesions in PPTg or SNc learnt this, however rats with contralateral (but not ipsilateral) combined lesions in both structures presented no sign of learning. This effect was not likely to be due to sensorimotor impairment because lesions did not affect reaction time to the tone or footshock during conditioning. However, an increased number of non-responses were observed in the rats with contralateral lesions. The results support the hypothesis that a functional interaction between PPTg and SNc is needed for CAR learning and performance.
Progress in Neuro-psychopharmacology & Biological Psychiatry | 2012
Jardel Gomes Villarinho; Roselei Fachinetto; Francielle de Vargas Pinheiro; Gabriela da Silva Sant'Anna; Pablo Machado; Patrícia A. Dombrowski; Claudio Da Cunha; Daniela Almeida Cabrini; Marcos A. P. Martins; Helio G. Bonacorso; Nilo Zanatta; Maribel Antonello Rubin; Juliano Ferreira
Monoamine oxidase (MAO) inhibitors were the first antidepressant drugs to be prescribed and are still used today with great success, especially in patients resistant to other antidepressants. In this study, we evaluated the MAO inhibitory properties and the potential antidepressant action of 2-(3,4-dimethoxy-phenyl)-4,5-dihydro-1H-imidazole (2-DMPI) in mice. We found that 2-DMPI inhibited both MAO isoforms (K(i) values were 1.53 (1.3-1.8) μM and 46.67 (31.8-68.4) μM for MAO-A and MAO-B, respectively) with 30-fold higher selectivity toward MAO-A. In relation to the nature of MAO-A inhibition, 2-DMPI showed to be a mixed and reversible inhibitor. The treatment with 2-DMPI (100-1000 μmol/kg, s.c.) caused a significant decrease in immobility time in the tail suspension test (TST) without affecting locomotor activity, motor coordination or anxiety-related activities. Conversely, moclobemide (1000 μmol/kg, s.c.) caused a significant increase in immobility time in the TST, which appeared to be mediated by a nonspecific effect on motor coordination function. 2-DMPI (300 μmol/kg, s.c.) decreased serotonin turnover in the cerebral cortex, hippocampus and striatum, whereas dopamine turnover was diminished only in the striatum, and norepinephrine turnover was not changed. The antidepressant-like effect of 2-DMPI was inhibited by the pretreatment of mice with methysergide (2 mg/kg, s.c., a non-selective serotonin receptor antagonist), WAY100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) or haloperidol (0.05 mg/kg, i.p., a non-selective dopamine receptor antagonist). These results suggest that 2-DMPI is a prototype reversible and preferential MAO-A inhibitor with potential antidepressant activity, due to its modulatory effect on serotonergic and dopaminergic systems.
Journal of Neuroscience Research | 2013
Ana Carolina D. Dos Santos; Marcela Alexandra V. Castro; Elis Angela K. Jose; Ana Marcia Delattre; Patrícia A. Dombrowski; Claudio Da Cunha; Anete Curte Ferraz; Marcelo M.S. Lima
The recently described intranigral rotenone model of Parkinsons disease (PD) in rodents provides an interesting model for studying mechanisms of toxin‐induced dopaminergic neuronal injury. The relevance of this model remains unexplored with regard to sleep disorders that occur in PD. On this basis, the construction of a PD model depicting several behavioral and neurochemical alterations related to sleep would be helpful in understanding the association between PD and sleep regulation. We performed bilateral intranigral injections of rotenone (12 μg) on day 0 and the open‐field test initially on day 20 after rotenone. Acquisition phase of the object‐recognition test, executed also during day 20, was followed by an exact period of 24 hr of rapid eye movement (REM) sleep deprivation (REMSD; day 21). In the subsequent day (22), the rats were re‐exposed to the open‐field test and to the object‐recognition test (choice phase). After the last session of behavioral tests, the rat brains were immediately dissected, and their striata were collected for neurochemical purposes. We observed that a brief exposure to REMSD was able to impair drastically the object‐recognition test, similarly to a nigrostriatal lesion promoted by intranigral rotenone. However, the combination of REMSD and rotenone surprisingly did not inflict memory impairment, concomitant with a moderate compensatory mechanism mediated by striatal dopamine release. In addition, we demonstrated the existence of changes in serotonin and noradrenaline neurotransmissions within the striatum mostly as a function of REMSD and REMSD plus rotenone, respectively.
Journal of Neural Transmission-supplement | 2009
Angela B. Reksidler; Marcelo M. S. Lima; Patrícia A. Dombrowski; Gabriela F. Barnabé; Monica L. Andersen; Sergio Tufik; Maria A.B.F. Vital
The potential neuroprotective or neurotoxic effects of 3,4-dihydroxyphenylalanine (L-DOPA) are yet to be understood. We examined the behavioral, immunohistochemical, tyrosine hydroxylase (TH) expression and neurochemical parameters after an intranigral administration of L-DOPA (10 microM) in rats. L-DOPA elicited a 30.5% reduction in dopaminergic neurons, while 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (100 microg microL(-1)) produced a 53.6% reduction. A combined infusion of MPTP and L-DOPA generated a 42% reduction of nigral neurons. Motor parameters revealed that both the MPTP and L-DOPA groups presented impairments; however, the concomitant administration evoked a partial restorative effect. In addition, MPTP and L-DOPA separately induced reductions of TH protein expression within the substantia nigra. In contrast, the coadministration of MPTP and L-DOPA did not demonstrate such difference. The striatal levels of dopamine were reduced after MPTP or L-DOPA, with an increased turnover only for the MPTP group. In view of such results, it seems reasonable to suggest that L-DOPA could potentially produce dopaminergic neurotoxicity.
Parkinson's Disease | 2010
M.T. Tadaiesky; Patrícia A. Dombrowski; C. Da Cunha; Reinaldo N. Takahashi
A previous study from our laboratory revealed that moderate nigral dopaminergic degeneration caused emotional and cognitive deficits in rats, paralleling early signs of Parkinsons disease. Recent evidence suggests that the blockade of cannabinoid CB1 receptors might be beneficial to alleviate motor inhibition typical of Parkinsons disease. Here, we investigated whether antagonism of CB1 receptors would improve emotional and cognitive deficits in a rat model of premotor Parkinsons disease. Depression-like behavior and cognition were assessed with the forced swim test and the social recognition test, respectively. Confirming our previous study, rats injected with 6-hydroxydopamine in striatum presented emotional and cognitive alterations which were improved by acute injection of SR141716A. HPLC analysis of monoamine levels demonstrated alterations in the striatum and prefrontal cortex after SR141716A injection. These findings suggest a role for CB1 receptors in the early symptoms caused by degeneration of dopaminergic neurons in the striatum, as observed in Parkinsons disease.