Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suelen Lucio Boschen is active.

Publication


Featured researches published by Suelen Lucio Boschen.


Behavioural Brain Research | 2009

Learning processing in the basal ganglia: a mosaic of broken mirrors.

Claudio Da Cunha; Evellyn Claudia Wietzikoski; Patrícia A. Dombrowski; Mariza Bortolanza; Lucélia Mendes dos Santos; Suelen Lucio Boschen; Edmar Miyoshi

In the present review we propose a model to explain the role of the basal ganglia in sensorimotor and cognitive functions based on a growing body of behavioural, anatomical, physiological, and neurochemical evidence accumulated over the last decades. This model proposes that the body and its surrounding environment are represented in the striatum in a fragmented and repeated way, like a mosaic consisting of the fragmented images of broken mirrors. Each fragment forms a functional unit representing articulated parts of the body with motion properties, objects of the environment which the subject can approach or manipulate, and locations the subject can move to. These units integrate the sensory properties and movements related to them. The repeated and widespread distribution of such units amplifies the combinatorial power of the associations among them. These associations depend on the phasic release of dopamine in the striatum triggered by the saliency of stimuli and will be reinforced by the rewarding consequences of the actions related to them. Dopamine permits synaptic plasticity in the corticostriatal synapses. The striatal units encoding the same stimulus/action send convergent projections to the internal segment of the globus pallidus (GPi) and to the substantia nigra pars reticulata (SNr) that stimulate or hold the action through a thalamus-frontal cortex pathway. According to this model, this is how the basal ganglia select actions based on environmental stimuli and store adaptive associations as nondeclarative memories such as motor skills, habits, and memories formed by Pavlovian and instrumental conditioning.


European Journal of Pharmacology | 2011

Involvement of mast cells in a mouse model of postoperative pain.

Sara Marchesan Oliveira; Carine Drewes; Cássia Regina Silva; Gabriela Trevisan; Suelen Lucio Boschen; Camila Guimarães Moreira; Daniela Almeida Cabrini; Claudio Da Cunha; Juliano Ferreira

Recent studies have indicated that nearly half of all surgical patients still have inadequate pain relief; therefore, it is becoming increasingly more important to understand the mechanisms involved in postoperative pain in order to be better treated. Previous studies have shown that incisions can cause mast cell degranulation. Thus, the aim of this study was to investigate the involvement of mast cells in a model of postoperative pain in mice. The depletion of mast cell mediators produced by pre-treatment with compound 48/80 (intraplantar (i.pl.)) widely (98 ± 23% of inhibition) and extensively (up to 96 h) prevented postoperative nociception and reduced histamine and serotonin levels (88 ± 4% and 68 ± 10%, respectively) in operated tissue. Furthermore, plantar surgery produced immense mast cell degranulation, as assessed by histology and confirmed by the increased levels of serotonin (three-fold higher) and histamine (fifteen-fold higher) in the perfused tissue, 1h after surgery. Accordingly, pre-treatment with the mast cell membrane stabilizer cromoglycate (200 μg/paw, i.pl.) prevented mechanical allodynia (inhibition of 96 ± 21%) and an increase in histamine (44 ± 10% of inhibition) and serotonin (73 ± 5% of inhibition) levels induced by plantar surgery. Finally, local treatment with H(1) (promethazine, 100 μg/paw, i.pl.), 5-HT(3) (ondansetron, 10 μg/paw, i.pl.) or 5-HT(2A) (ketanserin, 5 μg/paw, i.pl.) receptor antagonists partially decreased postoperative nociception in mice, but when co-administered together it completely reversed the mechanical allodynia in operated mice. Thus, mast cell activation mechanisms are interesting targets for the development of novel therapies to treat postoperative pain.


Behavioural Brain Research | 2014

Neuroprotective effects of peroxisome proliferator-activated receptor alpha and gamma agonists in model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine.

Janaína K. Barbiero; Ronise M. Santiago; Daniele Suzete Persike; Maria José da Silva Fernandes; Fernanda S. Tonin; Claudio Da Cunha; Suelen Lucio Boschen; Marcelo M.S. Lima; Maria A.B.F. Vital

A large body of evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists may improve some of the pathological features of Parkinsons disease (PD). In the present study, we evaluated the effects of the PPAR-α agonist fenofibrate (100mg/kg) and PPAR-γ agonist pioglitazone (30mg/kg) in a rat model of parkinsonism induced by intranigral 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine (MPTP). Male Wistar rats were pretreated with both drugs for 5 days and received an infusion of MPTP. The experiments were divided into two parts. First, 1, 7, 14, and 21 days after surgery, the animals were submitted to the open field test. On days 21 and 22, the rats were subjected to the forced swim test and two-way active avoidance task. In the second part of the study, 24h after neurotoxin administration, immunohistochemistry was performed to assess tyrosine hydroxylase activity. The levels of dopamine and its metabolites in the striatum were determined using high-performance liquid chromatography, and fluorescence detection was used to assess caspase-3 activation in the substantia nigra pars compacta (SNpc). Both fenofibrate as pioglitazone protected against hypolocomotion, depressive-like behavior, impairment of learning and memory, and dopaminergic neurodegeneration caused by MPTP, with dopaminergic neuron loss of approximately 33%. Fenofibrate and pioglitazone also protected against the increased activation of caspase-3, an effector enzyme of the apoptosis cascade that is considered one of the pathological features of PD. Thus, PPAR agonists may contribute to therapeutic strategies in PD.


Behavioural Brain Research | 2012

Both the dorsal hippocampus and the dorsolateral striatum are needed for rat navigation in the Morris water maze

Edmar Miyoshi; Evellyn Claudia Wietzikoski; Mariza Bortolanza; Suelen Lucio Boschen; Newton Sabino Canteras; Ivan Izquierdo; Claudio Da Cunha

The multiple memory systems theory proposes that the hippocampus and the dorsolateral striatum are the core structures of the spatial/relational and stimulus-response (S-R) memory systems, respectively. This theory is supported by double dissociation studies showing that the spatial and cue (S-R) versions of the Morris water maze are impaired by lesions in the dorsal hippocampus and dorsal striatum, respectively. In the present study we further investigated whether adult male Wistar rats bearing double and bilateral electrolytic lesions in the dorsal hippocampus and dorsolateral striatum were as impaired as rats bearing single lesions in just one of these structures in learning both versions of the water maze. Such a prediction, based on the multiple memory systems theory, was not confirmed. Compared to the controls, the animals with double lesions exhibited no improvement at all in the spatial version and learned the cued version very slowly. These results suggest that, instead of independent systems competing for holding control over navigational behaviour, the hippocampus and dorsal striatum both play critical roles in navigation based on spatial or cue-based strategies.


Neurobiology of Learning and Memory | 2011

The role of nucleus accumbens and dorsolateral striatal D2 receptors in active avoidance conditioning

Suelen Lucio Boschen; Evellyn Claudia Wietzikoski; Philip Winn; Claudio Da Cunha

The role of dopamine (DA) in rewarding motivated actions is well established but its role in learning how to avoid aversive events is still controversial. Here we tested the role of D2-like DA receptors in the nucleus accumbens (NAc) and the dorsolateral striatum (DLS) of rats in the learning and performance of conditioned avoidance responses (CAR). Adult male Wistar rats received systemic, intra-NAc or intra-DLS (pre- or post-training) administration of a D2-like receptor agonist (quinpirole) or antagonist ((-)sulpiride) and were given two sessions in the two-way active avoidance task. The main effects observed were: (i) sulpiride and lower (likely pre-synaptic) doses of quinpirole decreased the number of CARs and increased the number of escape failures; (ii) higher doses of quinpirole (likely post-synaptic) increased inter-trial crossings and failures; (iii) pre-training administration of sulpiride decreased the number of CARs in both training and test sessions when infused into the NAc, but this effect was observed only in the test session when it was infused into the DLS; (iv) post-training administration of sulpiride decreased CARs in the test session when infused into the NAc but not DLS. These findings suggest that activation of D2 receptors in the NAc is critical for fast adaptation to responding to unconditioned and conditioned aversive stimuli while activation of these receptors in the DLS is needed for a slower learning of how to respond to the same stimuli based on previous experiences.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2014

PPAR-α agonist fenofibrate protects against the damaging effects of MPTP in a rat model of Parkinson's disease

Janaína K. Barbiero; Ronise M. Santiago; Fernanda S. Tonin; Suelen Lucio Boschen; Luisa Mota da Silva; Maria Fernanda de Paula Werner; Claudio Da Cunha; Marcelo M.S. Lima; Maria A.B.F. Vital

Parkinsons disease (PD) is a chronic neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The etiology and pathogenesis of PD are still unknown, however, many evidences suggest a prominent role of oxidative stress, inflammation, apoptosis, mitochondrial dysfunction and proteosomal dysfunction. The peroxisome proliferator-activated receptor (PPAR) ligands, a member of the nuclear receptor family, have anti-inflammatory activity over a variety of rodents models for acute and chronic inflammation. PPAR-α agonists, a subtype of the PPAR receptors, such as fenofibrate, have been shown a major role in the regulation of inflammatory processes. Animal models of PD have shown that neuroinflammation is one of the most important mechanisms involved in dopaminergic cell death. In addition, anti-inflammatory drugs are able to attenuate toxin-induced parkinsonism. In this study we evaluated the effects of oral administration of fenofibrate 100mg/kg 1h after infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the SNpc. First, we assessed the motor behavior in the open field for 24h, 7, 14 and 21 days after MPTP. Twenty-two days after surgery, the animals were tested for two-way active avoidance and forced swimming for evaluation regarding cognitive and depressive parameters, respectively. Twenty-three days after infusion of the toxin, we quantified DA and turnover and evaluated oxidative stress through the measurement of GSH (glutathione peroxidase), SOD (superoxide dismutase) and LOOH (hydroperoxide lipid). The data show that fenofibrate was able to decrease hypolocomotion caused by MPTP 24h after injury, depressive-like behavior 22 days after the toxin infusion, and also protected against decreased level of DA and excessive production of reactive oxygen species (ROS) 23 days after surgery. Thus, fenofibrate has shown a neuroprotective effect in the MPTP model of Parkinsons disease.


Brain Research | 2014

Neuroprotective and antidepressant-like effects of melatonin in a rotenone-induced Parkinson’s disease model in rats

Taysa Bervian Bassani; Raisa W. Gradowski; Tiago Zaminelli; Janaína K. Barbiero; Ronise M. Santiago; Suelen Lucio Boschen; Claudio Da Cunha; Marcelo M.S. Lima; Roberto Andreatini; Maria A.B.F. Vital

Parkinson׳s disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Systemic and intranigral exposure to rotenone in rodents reproduces many of the pathological and behavioral features of PD in humans and thus has been used as an animal model of the disease. Melatonin is a neurohormone secreted by the pineal gland, which has several important physiological functions. It has been reported to be neuroprotective in some animal models of PD. The present study investigated the effects of prolonged melatonin treatment in rats previously exposed to rotenone. The animals were intraperitoneally treated for 10 days with rotenone (2.5mg/kg) or its vehicle. 24h later, they were intraperitoneally treated with melatonin (10mg/kg) or its vehicle for 28 days. One day after the last rotenone exposure, the animals exhibited hypolocomotion in the open field test, which spontaneously reversed at the last motor evaluation. We verified that prolonged melatonin treatment after dopaminergic lesion did not alter motor function but produced antidepressant-like effects in the forced swim test, prevented the rotenone-induced reduction of striatal dopamine, and partially prevented tyrosine hydroxylase immunoreactivity loss in the SNpc. Our results indicate that melatonin exerts neuroprotective and antidepressant-like effects in the rotenone model of PD.


Neuroscience & Biobehavioral Reviews | 2015

Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation

Claudio Da Cunha; Suelen Lucio Boschen; Alexander Gomez-A; Erika K. Ross; William S. Gibson; Hoon Ki Min; Kendall H. Lee

This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinsons disease, Huntingtons disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms.


Behavioural Brain Research | 2013

Evidence that conditioned avoidance responses are reinforced by positive prediction errors signaled by tonic striatal dopamine.

Patrícia A. Dombrowski; Tiago V. Maia; Suelen Lucio Boschen; Mariza Bortolanza; Etieli Wendler; Rainer K.W. Schwarting; Marcus Lira Brandão; Philip Winn; Claudio Da Cunha

We conducted an experiment in which hedonia, salience and prediction error hypotheses predicted different patterns of dopamine (DA) release in the striatum during learning of conditioned avoidance responses (CARs). The data strongly favor the latter hypothesis. It predicts that during learning of the 2-way active avoidance CAR task, positive prediction errors generated when rats do not receive an anticipated footshock (which is better than expected) cause DA release that reinforces the instrumental avoidance action. In vivo microdialysis in the rat striatum showed that extracellular DA concentration increased during early CAR learning and decreased throughout training returning to baseline once the response was well learned. In addition, avoidance learning was proportional to the degree of DA release. Critically, exposure of rats to the same stimuli but in an unpredictable, unavoidable, and inescapable manner, did not produce alterations from baseline DA levels as predicted by the prediction error but not hedonic or salience hypotheses. In addition, rats with a partial lesion of substantia nigra DA neurons, which did not show increased DA levels during learning, failed to learn this task. These data represent clear and unambiguous evidence that it was the factor positive prediction error, and not hedonia or salience, which caused increase in the tonic level of striatal DA and which reinforced learning of the instrumental avoidance response.


Neurobiology of Learning and Memory | 2010

Functional disconnection of the substantia nigra pars compacta from the pedunculopontine nucleus impairs learning of a conditioned avoidance task

Mariza Bortolanza; Evellyn Claudia Wietzikoski; Suelen Lucio Boschen; Patrícia A. Dombrowski; Mary P. Latimer; Duncan A.A. MacLaren; Philip Winn; Claudio Da Cunha

The pedunculopontine tegmental nucleus (PPTg) targets nuclei in the basal ganglia, including the substantia nigra pars compacta (SNc), in which neuronal loss occurs in Parkinsons disease, a condition in which patients show cognitive as well as motor disturbances. Partial loss and functional abnormalities of neurons in the PPTg are also associated with Parkinsons disease. We hypothesized that the interaction of PPTg and SNc might be important for cognitive impairments and so investigated whether disrupting the connections between the PPTg and SNc impaired learning of a conditioned avoidance response (CAR) by male Wistar rats. The following groups were tested: PPTg unilateral; SNc unilateral; PPTg-SNc ipsilateral (ipsilateral lesions in PPTg and SNc); PPTg-SNc contralateral (contralateral lesions in PPTg and SNc); sham lesions (of each type). SNc lesions were made with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine HCl (MPTP, 0.6micromol); PPTg lesions with ibotenate (24nmol). After recovery, all rats underwent 50-trial sessions of 2-way active avoidance conditioning for 3 consecutive days. Rats with unilateral lesions in PPTg or SNc learnt this, however rats with contralateral (but not ipsilateral) combined lesions in both structures presented no sign of learning. This effect was not likely to be due to sensorimotor impairment because lesions did not affect reaction time to the tone or footshock during conditioning. However, an increased number of non-responses were observed in the rats with contralateral lesions. The results support the hypothesis that a functional interaction between PPTg and SNc is needed for CAR learning and performance.

Collaboration


Dive into the Suelen Lucio Boschen's collaboration.

Top Co-Authors

Avatar

Claudio Da Cunha

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Maria A.B.F. Vital

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Marcelo M.S. Lima

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Mariza Bortolanza

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Roberto Andreatini

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Ronise M. Santiago

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janaína K. Barbiero

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edmar Miyoshi

Federal University of Paraná

View shared research outputs
Researchain Logo
Decentralizing Knowledge