Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia A. Zipfel is active.

Publication


Featured researches published by Patricia A. Zipfel.


Molecular and Cellular Biology | 2004

Abi2-Deficient Mice Exhibit Defective Cell Migration, Aberrant Dendritic Spine Morphogenesis, and Deficits in Learning and Memory

Matthew Grove; Galina P. Demyanenko; Asier Echarri; Patricia A. Zipfel; Marisol Quiroz; Ramona M. Rodriguiz; Martin Playford; Shelby A. Martensen; Matthew R. Robinson; William C. Wetsel; Patricia F. Maness; Ann Marie Pendergast

ABSTRACT The Abl-interactor (Abi) family of adaptor proteins has been linked to signaling pathways involving the Abl tyrosine kinases and the Rac GTPase. Abi proteins localize to sites of actin polymerization in protrusive membrane structures and regulate actin dynamics in vitro. Here we demonstrate that Abi2 modulates cell morphogenesis and migration in vivo. Homozygous deletion of murine abi2 produced abnormal phenotypes in the eye and brain, the tissues with the highest Abi2 expression. In the absence of Abi2, secondary lens fiber orientation and migration were defective in the eye, without detectable defects in proliferation, differentiation, or apoptosis. These phenotypes were consistent with the localization of Abi2 at adherens junctions in the developing lens and at nascent epithelial cell adherens junctions in vitro. Downregulation of Abi expression by RNA interference impaired adherens junction formation and correlated with downregulation of the Wave actin-nucleation promoting factor. Loss of Abi2 also resulted in cell migration defects in the neocortex and hippocampus, abnormal dendritic spine morphology and density, and severe deficits in short- and long-term memory. These findings support a role for Abi2 in the regulation of cytoskeletal dynamics at adherens junctions and dendritic spines, which is critical for intercellular connectivity, cell morphogenesis, and cognitive functions.


Current Biology | 2004

Requirement for Abl Kinases in T Cell Receptor Signaling

Patricia A. Zipfel; Weiguo Zhang; Marisol Quiroz; Ann Marie Pendergast

BACKGROUND The c-Abl and Arg proteins comprise a unique family of nonreceptor tyrosine kinases that have been implicated in the regulation of cell proliferation and survival, cytoskeletal reorganization, cell migration, and the response to oxidative stress and DNA damage. Targeted deletion or mutation of c-Abl in mice results in a variety of immune system phenotypes, including splenic and thymic atrophy, lymphopenia, and an increased susceptibility to infection. However, despite the generation of these mice over a decade ago, little is known regarding the mechanisms responsible for these phenotypes or the immune-related consequences of ablation of both the c-Abl and Arg kinases, which are coexpressed in lymphoid tissues. RESULTS Here, we report that T cell receptor (TCR) stimulation results in activation of the endogenous Abl kinases. We demonstrate that Zap70 and the transmembrane adaptor linker for activation of T cells (LAT) are targets of the Abl kinases, and that loss of Abl kinase activity reduces TCR-induced Zap70 phosphorylation at tyrosine 319. This correlates with diminished LAT tyrosine phosphorylation, as well as reduced tyrosine phosphorylation and recruitment of phospholipase Cgamma1 to LAT. Significantly, we show that Abl kinase activity is required for maximal signaling leading to transcription of the IL-2 promoter, as well as TCR-induced IL-2 production and proliferation of primary T cells. CONCLUSIONS We conclude that the Abl kinases have a role in the regulation of TCR-mediated signal transduction leading to IL-2 production and cell proliferation.


Current Biology | 2006

Role for the Abi/Wave Protein Complex in T Cell Receptor-Mediated Proliferation and Cytoskeletal Remodeling

Patricia A. Zipfel; Stephen C. Bunnell; D. Scott Witherow; Jing Jin Gu; Elizabeth M. Chislock; Colleen Ring; Ann Marie Pendergast

BACKGROUND The molecular reorganization of signaling molecules after T cell receptor (TCR) activation is accompanied by polymerization of actin at the site of contact between a T cell and an antigen-presenting cell (APC), as well as extension of actin-rich lamellipodia around the APC. Actin polymerization is critical for the fidelity and efficiency of the T cell response to antigen. The ability of T cells to polymerize actin is critical for several steps in T cell activation including TCR clustering, mature immunological synapse formation, calcium flux, IL-2 production, and proliferation. Activation of the Rac GTPase has been linked to regulation of actin polymerization after TCR stimulation. However, the molecules required for TCR-mediated actin polymerization downstream of activated Rac have remained elusive. Here we identify a novel role for the Abi/Wave protein complex, which signals downstream of activated Rac, in the regulation of actin polymerization and T cell activation in response to TCR stimulation. RESULTS Here we show that Abi and Wave rapidly translocate from the T cell cytoplasm to the T cell:B cell contact site in the presence of antigen. Abi and Wave colocalize with actin at the T cell:B cell conjugation site. Moreover, Wave and Abi are necessary for actin polymerization after T cell activation, and loss of Abi proteins in mice impairs TCR-induced cell proliferation and IL-2 production in primary T cells. Significantly, the impairment in actin polymerization in cells lacking Abi proteins is due to the inability of Wave proteins to localize to the T cell:B cell contact site in the presence of antigen, rather than the destabilization of the components of the Wave protein complex. CONCLUSIONS The Abi/Wave complex is a novel regulator of TCR-mediated actin dynamics, IL-2 production, and proliferation.


Clinical Cancer Research | 2009

Genomic and Molecular Profiling Predicts Response to Temozolomide in Melanoma

Christina K. Augustine; Jin S. Yoo; Anil Potti; Yasunori Yoshimoto; Patricia A. Zipfel; Henry S. Friedman; Joseph R. Nevins; Francis Ali-Osman; Douglas S. Tyler

Purpose: Despite objective response rates of only ∼13%, temozolomide remains one of the most effective single chemotherapy agents against metastatic melanoma, second only to dacarbazine, the current standard of care for systemic treatment of melanoma. The goal of this study was to identify molecular and/or genetic markers that correlate with, and could be used to predict, response to temozolomide-based treatment regimens and that reflect the intrinsic properties of a patients tumor. Experimental Design: Using a panel of 26 human melanoma-derived cell lines, we determined in vitro temozolomide sensitivity, O6-methylguanine-DNA methyltransferase (MGMT) activity, MGMT protein expression and promoter methylation status, and mismatch repair proficiency, as well as the expression profile of 38,000 genes using an oligonucleotide-based microarray platform. Results: The results showed a broad spectrum of temozolomide sensitivity across the panel of cell lines, with IC50 values ranging from 100 μmol/L to 1 mmol/L. There was a significant correlation between measured temozolomide sensitivity and a gene expression signature–derived prediction of temozolomide sensitivity (P < 0.005). Notably, MGMT alone showed a significant correlation with temozolomide sensitivity (MGMT activity, P < 0.0001; MGMT expression, P ≤ 0.0001). The promoter methylation status of the MGMT gene, however, was not consistent with MGMT gene expression or temozolomide sensitivity. Conclusions: These results show that melanoma resistance to temozolomide is conferred predominantly by MGMT activity and suggest that MGMT expression could potentially be a useful tool for predicting the response of melanoma patients to temozolomide therapy.


Journal of Immunology | 2000

The c-Abl Tyrosine Kinase Is Regulated Downstream of the B Cell Antigen Receptor and Interacts with CD19

Patricia A. Zipfel; Matthew Grove; Kevin Blackburn; Manabu Fujimoto; Thomas F. Tedder; Ann Marie Pendergast

c-Abl is a nonreceptor tyrosine kinase that we have recently linked to growth factor receptor signaling. The c-Abl kinase is ubiquitously expressed and localizes to the cytoplasm, plasma membrane, cytoskeleton, and nucleus. Thus, c-Abl may regulate signaling processes in multiple subcellular compartments. Targeted deletion or mutation of c-Abl in mice results in a variety of phenotypes, including splenic and thymic atrophy and lymphopenia. Additionally, lymphocytes isolated from specific compartments of c-Abl mutant mice have reduced responses to a variety of stimuli and an increased susceptibility to apoptosis following growth factor deprivation. Despite these observations, little is known regarding the signaling mechanisms responsible for these phenotypes. We report here that splenic B cells from c-Abl-deficient mice are hyporesponsive to the proliferative effects of B cell Ag receptor (BCR) stimulation. The c-Abl kinase activity and protein levels are elevated in the cytosol following activation of the BCR in B cell lines. We show that c-Abl associates with and phosphorylates the BCR coreceptor CD19, and that c-Abl and CD19 colocalize in lipid membrane rafts. These data suggest a role for c-Abl in the regulation of B cell proliferation downstream of the BCR, possibly through interactions with CD19.


Cell Cycle | 2008

Novel anticancer compounds induce apoptosis in melanoma cells

Uppoor G. Bhat; Patricia A. Zipfel; Douglas S. Tyler; Andrei L. Gartel

We previously described the identification of a nucleoside analog transcriptional inhibitor ARC (4-amino-6-hydrazino-7-beta-D-ribofuranosyl-7H-Pyrrolo[2,3-d]-pyrimidine-5-carboxamide) and FoxM1 inhibitor, thiazole antibiotic Siomycin A that were able to induce apoptosis in cancer cell lines of different origin. Here, we report the characterization of these drugs on a panel of melanoma cell lines. We found that in contrast to the common anti-melanoma drug dacarbazine (DTIC), ARC and thiazole antibiotics, Siomycin A and thiostrepton, efficiently inhibited growth and induced cell death in melanoma cell lines in low concentrations. Overexpression of the antiapoptotic protein Mcl-1 protected melanoma cells from apoptosis induced by these compounds. Furthermore, we found that ARC and Siomycin A synergistically induce apoptosis in DM833 melanoma cell line suggesting that they may antagonize different anti-apoptotic pathways in melanoma cells. In general, these drugs may represent important candidates for anti-cancer drug development against melanoma.


Molecular Cancer Therapeutics | 2010

Sorafenib, a Multikinase Inhibitor, Enhances the Response of Melanoma to Regional Chemotherapy

Christina K. Augustine; Hiroaki Toshimitsu; Sin-Ho Jung; Patricia A. Zipfel; Jin S. Yoo; Yasunori Yoshimoto; M. Angelica Selim; James L. Burchette; Georgia M. Beasley; Nicole McMahon; James Padussis; Scott K. Pruitt; Francis Ali-Osman; Douglas S. Tyler

Melanoma responds poorly to standard chemotherapy due to its intrinsic chemoresistance. Multiple genetic and molecular defects, including an activating mutation in the BRaf kinase gene, are associated with melanoma, and the resulting alterations in signal transduction pathways regulating proliferation and apoptosis are thought to contribute to its chemoresistance. Sorafenib, a multikinase inhibitor that targets BRaf kinase, is Food and Drug Administration approved for use in advanced renal cell and hepatocellular carcinomas. Although sorafenib has shown little promise as a single agent in melanoma patients, recent clinical trials suggest that, when combined with chemotherapy, it may have more benefit. We evaluated the ability of sorafenib to augment the cytotoxic effects of melphalan, a regional chemotherapeutic agent, and temozolomide, used in systemic and regional treatment of melanoma, on a panel of 24 human melanoma-derived cell lines and in an animal model of melanoma. Marked differences in response to 10 μmol/L sorafenib alone were observed in vitro across cell lines. Response to sorafenib significantly correlated with extracellular signal-regulated kinase (ERK) downregulation and loss of Mcl-1 expression (P < 0.05). Experiments with the mitogen-activated protein kinase/ERK kinase inhibitor U0126 suggest a unique role for ERK downregulation in the observed effects. Sorafenib in combination with melphalan or temozolomide led to significantly improved responses in vitro (P < 0.05). In the animal model of melanoma, sorafenib in combination with regional melphalan or regional temozolomide was more effective than either treatment alone in slowing tumor growth. These results show that sorafenib in combination with chemotherapy provides a novel approach to enhance chemotherapeutic efficacy in the regional treatment of in-transit melanoma. Mol Cancer Ther; 9(7); 2090–101. ©2010 AACR.


Molecular Cancer Therapeutics | 2007

Defining regional infusion treatment strategies for extremity melanoma: Comparative analysis of melphalan and temozolomide as regional chemotherapeutic agents

Yasunori Yoshimoto; Christina K. Augustine; Jin S. Yoo; Patricia A. Zipfel; M. Angelica Selim; Scott K. Pruitt; Henry S. Friedman; Francis Ali-Osman; Douglas S. Tyler

Five different human melanoma xenografts were used in a xenograft model of extremity melanoma to evaluate the variability of tumor response to regionally administered melphalan or temozolomide and to determine if various components of pertinent drug resistance pathways for melphalan [glutathione S-transferase (GST)/glutathione] and temozolomide [O6-alkylguanine DNA alkyltranferase (AGT)/mismatch repair (MMR)] could be predictive of tumor response. Xenograft-bearing rats underwent regional isolated limb infusion with either melphalan (90 mg/kg) or temozolomide (2,000 mg/kg). The levels of AGT activity, GST activity, glutathione level, and GST/AGT expression were examined in this group of xenografts and found to be quite heterogeneous. No correlation was identified between melphalan sensitivity and the GST/glutathione cellular detoxification pathway. In contrast, a strong correlation between the levels of AGT activity and percentage increase in tumor volume on day 30 (r = 0.88) was noted for tumors treated with temozolomide. Regional therapy with temozolomide was more effective when compared with melphalan for the xenograft with the lowest AGT activity, whereas melphalan was more effective than temozolomide in another xenograft that had the highest AGT activity. In three other xenografts, there was no significant difference in response between the two chemotherapy agents. This study shows that AGT activity may be useful in predicting the utility of temozolomide-based regional therapy for advanced extremity melanoma tumors. Our observations also point out the limited ability of analysis of the GST/glutathione pathway to predict response to chemotherapies like melphalan whose resistance is primarily mediated through a complex mechanism of detoxification. [Mol Cancer Ther 2007;6(5):1492–500]


Journal of Surgical Research | 2012

Enhancing melanoma treatment with resveratrol.

Gregory W. Osmond; Christina K. Augustine; Patricia A. Zipfel; James Padussis; Douglas S. Tyler

BACKGROUND Resveratrol (RESV) is a naturally occurring compound that possesses anti-cancer capabilities. The goal of this study was to evaluate the potential of RESV as an adjunct to chemotherapy in melanoma treatment. METHODS The in vitro and in vivo cytotoxic activity of RESV with or without chemotherapy was tested using cellular assays and a xenograft model. Two Duke melanoma cell lines (DM738, DM443) were used for both in vivo and in vitro experiments, and two nonmalignant human fibroblast lines (NHDF, HS68) were used for in vitro cellular assays. Xenografts were randomized to treatment arms and tumors measured to evaluate response. Results were analyzed using a Students t-test and ANOVA. Western blots were performed on in vivo tissue. RESULTS In vitro RESV significantly decreased melanoma cell viability in all lines tested (all P < 0.0001). Treatment of fibroblast cell lines revealed that RESV selectively spared NHDF and HS68 cells compared with its cytotoxic effects on melanoma cells (P < 0.0001). Treatment of malignant cells with 50 μM RESV and temozolomide (TMZ) for 72 h significantly enhanced cytotoxicity compared with treatment with TMZ alone (P < 0.0001). In vivo, however, there was no significant difference between any treatment arms (P = 0.65). CONCLUSION RESV shows promise as a novel therapeutic in the management of melanoma for its selective anti-tumor activity in vitro. Translating in vitro results to in vivo models has proven difficult. Barriers thought to prevent such translation are identified, and a rationale for overcoming them is discussed.


Clinical Cancer Research | 2009

Correction: Article on genomic and molecular profiling to predict response to temozolomide (Clinical Cancer Research (2009) 15, (502-510))

Christina K. Augustine; Jin S. Yoo; Anil Potti; Yasunori Yoshimoto; Patricia A. Zipfel; Henry S. Friedman; Joseph R. Nevins; Francis Ali-Osman; Douglas S. Tyler

Gene expression signature of predicted temozolomide resistance. A subset of 10 cell lines was selected from the NCI-60 panel of cancer cell lines that represented two extremes of sensitivity to temozolomide; five of these cell lines were classified as ‘‘resistant’’ and five as ‘‘sensitive’’. Using the gene expression profiles of these cell lines, we identified 150 genes that showed significantly different expression patterns between the ‘‘resistant’’ and ‘‘sensitive’’ cell lines-93 genes (red) were more highly expressed in the resistant than in the sensitive cell lines, whereas 57 genes (blue) were more highly expressed in the sensitive than in the resistant cell lines. A revised companion graph (Fig. S3) and a revised table of genes that make up the gene signature of sensitivity to temozolomide (Supplementary Table S4) are also provided.

Collaboration


Dive into the Patricia A. Zipfel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas S. Tyler

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge