Patricia F. Maness
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia F. Maness.
Nature Neuroscience | 2007
Patricia F. Maness; Melitta Schachner
Recognition molecules of the immunoglobulin superfamily have important roles in neuronal interactions during ontogeny, including migration, survival, axon guidance and synaptic targeting. Their downstream signal transduction events specify whether a cell changes its place of residence or projects axons and dendrites to targets in the brain, allowing the construction of a dynamic neural network. A wealth of recent discoveries shows that cell adhesion molecules interact with attractant and repellent guidance receptors to control growth cone and cell motility in a coordinate fashion. We focus on the best-studied subclasses, the neural cell adhesion molecule NCAM and the L1 family of adhesion molecules, which share important structural and functional features. We have chosen these paradigmatic molecules and their interactions with other recognition molecules as instructive for elucidating the mechanisms by which other recognition molecules may guide cell interactions during development or modify their function as a result of injury, learning and memory.
Neuron | 1994
Michael A. Ignelzi; Danette R. Miller; Philippe Soriano; Patricia F. Maness
The nonreceptor tyrosine protein kinases pp60c-src, p59fyn, and pp62c-yes are localized in growth cones of developing neurons, but their function is undefined. To determine whether these tyrosine kinases were capable of regulating substrate-dependent axon growth, cultures of cerebellar neurons from wild-type, src-, fyn-, and yes- mice were analyzed for neurite outgrowth on the neural cell adhesion molecule L1 or the extracellular matrix protein laminin. The rate of neurite extension on L1 was reduced in src-, but not in fyn- or yes- neurons. Neurite extension on laminin was unaltered in src-, fyn-, or yes- neurons, indicating that pp60c-src, p59fyn, or pp62c-yes is not likely to participate in integrin-dependent axon growth. These results demonstrate that pp60c-src is a component of the intracellular signaling pathway in L1-mediated axonal growth and suggest that Src-related nonreceptor tyrosine kinases may have distinct, nonredundant functions in the nervous system.
The Journal of Neuroscience | 1999
Galina P. Demyanenko; Amy Y. Tsai; Patricia F. Maness
In humans, mutations in the L1 cell adhesion molecule are associated with a neurological syndrome termed CRASH, which includes corpus callosum agenesis, mental retardation, adducted thumbs, spasticity, and hydrocephalus. A mouse model with a null mutation in the L1 gene (Cohen et al., 1997) was analyzed for brain abnormalities by Nissl and Golgi staining and immunocytochemistry. In the motor, somatosensory, and visual cortex, many pyramidal neurons in layer V exhibited undulating apical dendrites that did not reach layer I. The hippocampus of L1 mutant mice was smaller than normal, with fewer pyramidal and granule cells. The corpus callosum of L1-minus mice was reduced in size because of the failure of many callosal axons to cross the midline. Enlarged ventricles and septal abnormalities were also features of the mutant mouse brain. Immunoperoxidase staining showed that L1 was abundant in developing neurons at embryonic day 18 (E18) in wild-type cerebral cortex, hippocampus, and corpus callosum and then declined to low levels with maturation. In the E18 cortex, L1 colocalized with microtubule-associated protein 2, a marker of dendrites and somata. These new findings suggest new roles for L1 in the mechanism of cortical dendrite differentiation, as well as in guidance of callosal axons and regulation of hippocampal development. The phenotype of the L1 mutant mouse indicates that it is a potentially valuable model for the human CRASH syndrome.
Journal of Biological Chemistry | 1997
Hilary E. Beggs; Steven C. Baragona; John J. Hemperly; Patricia F. Maness
Axonal growth cones respond to adhesion molecules and extracellular matrix components by rapid morphological changes and growth rate modification. Neurite outgrowth mediated by the neural cell adhesion molecule (NCAM) requires the src family tyrosine kinase p59fyn in nerve growth cones, but the molecular basis for this interaction has not been defined. The NCAM140 isoform, which is found in migrating growth cones, selectively co-immunoprecipitated with p59fyn from nonionic detergent (Brij 96) extracts of early postnatal mouse cerebellum and transfected rat B35 neuroblastoma and COS-7 cells. p59fyn did not associate significantly with the NCAM180 isoform, which is found at sites of stable neural cell contacts, or with the glycophosphatidylinositol-linked NCAM120 isoform. pp60c-src, a tyrosine kinase that promotes neurite growth on the neuronal cell adhesion molecule L1, did not interact with any NCAM isoform. Whereas p59fyn was constitutively associated with NCAM140, the focal adhesion kinase p125fak, a nonreceptor tyrosine kinase known to mediate integrin-dependent signaling, became recruited to the NCAM140-p59fyn complex when cells were reacted with antibodies against the extracellular region of NCAM. Treatment of cells with a soluble NCAM fusion protein or with NCAM antibodies caused a rapid and transient increase in tyrosine phosphorylation of p125fak and p59fyn. These results suggest that NCAM140 binding interactions at the cell surface induce the assembly of a molecular complex of NCAM140, p125fak, and p59fyn and activate the catalytic function of these tyrosine kinases, initiating a signaling cascade that may modulate growth cone migration.
Journal of Neurobiology | 1999
Ralf-Steffen Schmid; Ronald D. Graff; Michael D. Schaller; Suzhen Chen; Melitta Schachner; John J. Hemperly; Patricia F. Maness
The neural cell adhesion molecule NCAM plays an important role in axonal growth, learning, and memory. A signaling pathway has been elucidated in which clustering of the NCAM140 isoform in the neural plasma membrane stimulated the activating phosphorylation of mitogen-activated protein kinases (MAPKs) and the transcription factor cyclic AMP response-element binding protein (CREB). NCAM clustering transiently induced dual phosphorylation (activation) of the MAPKs ERK1 and ERK2 (extracellular signal-regulated kinases) by a pathway regulated by the focal adhesion kinase p125fak, p59fyn, Ras, and MAPK kinase. CREB phosphorylation at serine 133 induced by NCAM was dependent in part on an intact MAPK pathway. c-Jun N-terminal kinase, which is associated with apoptosis and cellular stress, was not activated by NCAM. Inhibition of the MAPK pathway in rat cerebellar neuron cultures selectively reduced NCAM-stimulated neurite outgrowth. These results define an NCAM signal transduction mechanism with the potential for modulating the expression of genes needed for axonal growth, survival, and synaptic plasticity.
Neuron | 1992
Julie R. Atashi; Stephan G. Klinz; Christine A. Ingraham; Wayne T. Matten; Melitta Schachner; Patricia F. Maness
Triggering neural cell adhesion molecules of the immunoglobulin superfamily with specific ligands or antibodies inhibited the phosphorylation of tryosyl residues in a subpopulation of alpha- and beta-tubulin associated with membranes from a subcellular fraction of nerve growth cones from fetal rat brain. Preincubation of these membranes with purified extracellular fragments of L1, N-CAM, or myelin-associated glycoprotein, or with antibodies directed against the extracellular domains of L1 or N-CAM, inhibited pp60c-src-dependent phosphorylation of tubulin in an endogenous membrane kinase reaction. Other proteins that affect neurite outgrowth (fibronectin, laminin, antibodies against N-cadherin) had no effect. The results suggest that cell adhesion molecules transduce cell surface events to intracellular signals by modulating the activity of protein tyrosine kinases or phosphatases in axonal membranes to influence cytoskeletal dynamics at the growth cone.
Current Opinion in Neurobiology | 2008
Ralf S. Schmid; Patricia F. Maness
Neural cell adhesion molecules (CAMs) of the immunoglobulin superfamily engage in multiple neuronal interactions that influence cell migration, axonal and dendritic projection, and synaptic targeting. Their downstream signal transduction events specify whether a cell moves or projects axons and dendrites to targets in the brain. Many of the diverse functions of CAMs are brought about through homophilic and heterophilic interactions with other cell surface receptors. An emerging concept is that CAMs act as coreceptors to assist in intracellular signal transduction, and to provide cytoskeletal linkage necessary for cell and growth cone motility. Here we will focus on new discoveries that have revealed novel coreceptor functions for the best-understood CAMs--L1, CHL1, and NCAM--important for neuronal migration and axon guidance. We will also discuss how dysregulation of CAMs may also bear on neuropsychiatric disease and cancer.
The Journal of Neuroscience | 2005
Neeta Pillai-Nair; Anitha K. Panicker; Ramona M. Rodriguiz; Kelly Gilmore; Galina P. Demyanenko; Josh Z. Huang; William C. Wetsel; Patricia F. Maness
The extracellular region of the transmembrane neural cell adhesion molecule (NCAM-EC) is shed as a soluble fragment at elevated levels in the schizophrenic brain. A novel transgenic mouse line was generated to identify consequences on cortical development and function of expressing soluble NCAM-EC from the neuron-specific enolase promoter in the developing and mature neocortex and hippocampus. NCAM-EC transgenic mice exhibited a striking reduction in synaptic puncta of GABAergic interneurons in the cingulate, frontal association cortex, and amygdala but not hippocampus, as shown by decreased immunolabeling of glutamic acid decarboxylase-65 (GAD65), GAD67, and GABA transporter 1. Interneuron cell density was unaltered in the transgenic mice. Affected subpopulations of interneurons included basket interneurons evident in NCAM-EC transgenic mice intercrossed with a reporter line expressing green fluorescent protein and by parvalbumin staining. In addition, there appeared to be a reduction in excitatory synapses, as revealed by synaptophysin staining and apical dendritic spine density of cortical pyramidal cells. Behavioral analyses demonstrated higher basal locomotor activity of NCAM-EC mice and enhanced responses to amphetamine and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate compared with wild-type controls. Transgenic mice were deficient in prepulse inhibition, which was restored by clozapine but not by haloperidol. Additionally, NCAM-EC mice were impaired in contextual and cued fear conditioning. These results suggested that elevated shedding of NCAM perturbs synaptic connectivity of GABAergic interneurons and produces abnormal behaviors that may be relevant to schizophrenia and other neuropsychiatric disorders.
Molecular and Cellular Biology | 2004
Matthew Grove; Galina P. Demyanenko; Asier Echarri; Patricia A. Zipfel; Marisol Quiroz; Ramona M. Rodriguiz; Martin Playford; Shelby A. Martensen; Matthew R. Robinson; William C. Wetsel; Patricia F. Maness; Ann Marie Pendergast
ABSTRACT The Abl-interactor (Abi) family of adaptor proteins has been linked to signaling pathways involving the Abl tyrosine kinases and the Rac GTPase. Abi proteins localize to sites of actin polymerization in protrusive membrane structures and regulate actin dynamics in vitro. Here we demonstrate that Abi2 modulates cell morphogenesis and migration in vivo. Homozygous deletion of murine abi2 produced abnormal phenotypes in the eye and brain, the tissues with the highest Abi2 expression. In the absence of Abi2, secondary lens fiber orientation and migration were defective in the eye, without detectable defects in proliferation, differentiation, or apoptosis. These phenotypes were consistent with the localization of Abi2 at adherens junctions in the developing lens and at nascent epithelial cell adherens junctions in vitro. Downregulation of Abi expression by RNA interference impaired adherens junction formation and correlated with downregulation of the Wave actin-nucleation promoting factor. Loss of Abi2 also resulted in cell migration defects in the neocortex and hippocampus, abnormal dendritic spine morphology and density, and severe deficits in short- and long-term memory. These findings support a role for Abi2 in the regulation of cytoskeletal dynamics at adherens junctions and dendritic spines, which is critical for intercellular connectivity, cell morphogenesis, and cognitive functions.
Neuron | 2004
Galina P. Demyanenko; Melitta Schachner; E. S. Anton; Ralf S. Schmid; Guoping Feng; Joshua R. Sanes; Patricia F. Maness
We show that the neural cell recognition molecule Close Homolog of L1 (CHL1) is required for neuronal positioning and dendritic growth of pyramidal neurons in the posterior region of the developing mouse neocortex. CHL1 was expressed in pyramidal neurons in a high-caudal to low-rostral gradient within the developing cortex. Deep layer pyramidal neurons of CHL1-minus mice were shifted to lower laminar positions in the visual and somatosensory cortex and developed misoriented, often inverted apical dendrites. Impaired migration of CHL1-minus cortical neurons was suggested by strikingly slower rates of radial migration in cortical slices, failure to potentiate integrin-dependent haptotactic cell migration in vitro, and accumulation of migratory cells in the intermediate and ventricular/subventricular zones in vivo. The restriction of CHL1 expression and effects of its deletion in posterior neocortical areas suggests that CHL1 may regulate area-specific neuronal connectivity and, by extension, function in the visual and somatosensory cortex.