Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrícia Isabel Marques is active.

Publication


Featured researches published by Patrícia Isabel Marques.


Genome Biology and Evolution | 2012

Birth-and-Death of KLK3 and KLK2 in Primates: Evolution Driven by Reproductive Biology

Patrícia Isabel Marques; Rui Bernardino; Teresa Fernandes; Nisc Comparative Sequencing Program; Eric D. Green; Belen Hurle; Víctor Quesada; Susana Seixas

The kallikrein (KLK) gene family comprises the largest uninterrupted locus of serine proteases in the human genome and represents a notable case for studying the evolutionary fate of duplicated genes. In primates, a recent duplication event gave rise to KLK2 and KLK3, both encoding essential proteins for the cascade of seminal plasma liquefaction. We reconstructed the evolutionary history of KLK2 and KLK3 by comparative analysis of the orthologous sequences from 22 primate species, calculated dN/dS ratios, and addressed the hypothesis of coevolution with their substrates, the semenogelins (SEMG1 and SEMG2). Our findings support the placement of the KLK2–KLK3 duplication in the Catarrhini ancestor and unveil the frequent loss of KLK2 throughout primate evolution by different genomic mechanisms, including unequal crossing-over, deletions, and pseudogenization. We provide evidences for an adaptive evolution of KLK3 toward an expanded enzymatic spectrum, with an effect on the hydrolysis of semen coagulum. Furthermore, we found associations between mating system, the number of SEMG repeat units, and the number of functional KLK2 and KLK3, suggesting complex evolutionary dynamics shaped by reproductive biology.


PLOS ONE | 2013

SERPINA2 is a novel gene with a divergent function from SERPINA1.

Patrícia Isabel Marques; Zélia Ferreira; Manuella Martins; Joana Figueiredo; Diana Isabel Silva; Patrícia Castro; Ramiro Morales-Hojas; Joana Simões-Correia; Susana Seixas

Serine protease inhibitors (SERPINs) are a superfamily of highly conserved proteins that play a key role in controlling the activity of proteases in diverse biological processes. The SERPIN cluster located at the 14q32.1 region includes the gene coding for SERPINA1, and a highly homologous sequence, SERPINA2, which was originally thought to be a pseudogene. We have previously shown that SERPINA2 is expressed in different tissues, namely leukocytes and testes, suggesting that it is a functional SERPIN. To investigate the function of SERPINA2, we used HeLa cells stably transduced with the different variants of SERPINA2 and SERPINA1 (M1, S and Z) and leukocytes as the in vivo model. We identified SERPINA2 as a 52 kDa intracellular glycoprotein, which is localized at the endoplasmic reticulum (ER), independently of the variant analyzed. SERPINA2 is not significantly regulated by proteasome, proposing that ER localization is not due to misfolding. Specific features of SERPINA2 include the absence of insoluble aggregates and the insignificant response to cell stress, suggesting that it is a non-polymerogenic protein with divergent activity of SERPINA1. Using phylogenetic analysis, we propose an origin of SERPINA2 in the crown of primates, and we unveiled the overall conservation of SERPINA2 and A1. Nonetheless, few SERPINA2 residues seem to have evolved faster, contributing to the emergence of a new advantageous function, possibly as a chymotrypsin-like SERPIN. Herein, we present evidences that SERPINA2 is an active gene, coding for an ER-resident protein, which may act as substrate or adjuvant of ER-chaperones.


Frontiers in Pharmacology | 2017

Post-inflammatory Ileitis Induces Non-neuronal Purinergic Signaling Adjustments of Cholinergic Neurotransmission in the Myenteric Plexus

Cátia Vieira; Fátima Ferreirinha; M.T. Magalhães-Cardoso; Isabel dos Santos Silva; Patrícia Isabel Marques; Paulo Correia-de-Sá

Uncoupling between ATP overflow and extracellular adenosine formation changes purinergic signaling in post-inflammatory ileitis. Adenosine neuromodulation deficits were ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular adenine nucleotides in the inflamed ileum. Here, we hypothesized that inflammation-induced changes in cellular density may also account to unbalance the release of purines and their influence on [3H]acetylcholine release from longitudinal muscle-myenteric plexus preparations of the ileum of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-treated rats. The population of S100β-positive glial cells increase, whereas Ano-1-positive interstitial cells of Cajal (ICCs) diminished, in the ileum 7-days after the inflammatory insult. In the absence of changes in the density of VAChT-positive cholinergic nerves detected by immunofluorescence confocal microscopy, the inflamed myenteric plexus released smaller amounts of [3H]acetylcholine which also became less sensitive to neuronal blockade by tetrodotoxin (1 μM). Instead, [3H]acetylcholine release was attenuated by sodium fluoroacetate (5 mM), carbenoxolone (10 μM) and A438079 (3 μM), which prevent activation of glial cells, pannexin-1 hemichannels and P2X7 receptors, respectively. Sodium fluoroacetate also decreased ATP overflow without significantly affecting the extracellular adenosine levels, thus indicating that surplus ATP release parallels reactive gliosis in post-inflammatory ileitis. Conversely, loss of ICCs may explain the lower amounts of adenosine detected in TNBS-treated preparations, since blockade of Cav3 (T-type) channels existing in ICCs with mibefradil (3 μM) or inhibition of the equilibrative nucleoside transporter 1 with dipyridamole (0.5 μM), both decreased extracellular adenosine. Data indicate that post-inflammatory ileitis operates a shift on purinergic neuromodulation reflecting the upregulation of ATP-releasing enteric glial cells and the depletion of ICCs accounting for decreased adenosine overflow via equilibrative nucleoside transporters.


Molecular Biology and Evolution | 2016

Adaptive evolution favoring KLK4 downregulation in East-Asians

Patrícia Isabel Marques; Filipa Fonseca; Tânia Sousa; Paulo Santos; Vânia Camilo; Zélia Ferreira; Víctor Quesada; Susana Seixas

The human kallikrein (KLK) cluster, located at chromosome 19q13.3-13.4, encodes 15 serine proteases, including neighboring genes (KLK3, KLK2, KLK4, and KLK5) with key roles in the cascades of semen liquefaction, tooth enamel maturation, and skin desquamation. KLK2 and KLK3 were previously identified as targets of adaptive evolution in primates through different mechanisms linked to reproductive biology and, in humans, genome-wide scans of positive selection captured, a yet unexplored, evidence for KLK neutrality departure in East Asians. We perform a detailed evaluation of KLK3-KLK5 variability in the 1000 Genomes samples from East Asia, Europe, and Africa, which was sustained by our own sequencing. In East Asians, we singled out a 70-kb region surrounding KLK4 that combined unusual low levels of diversity, high frequency variants with significant levels of population differentiation (FST > 0.5) and fairly homogenous haplotypes given the large local recombination rates. Among these variants, rs1654556_G, rs198968_T, and rs17800874_A stand out for their location on putative regulatory regions and predicted functional effects, namely the introduction of several microRNA binding sites and a repressor motif. Our functional assays carried out in different cellular models showed that rs198968_T and rs17800874_A operate synergistically to reduce KLK4 expression and could be further assisted by rs1654556_G. Considering the previous findings that KLK4 inactivation causes enamel malformations in humans and mice, and that this gene is coexpressed in epidermal layers along with several substrates involved in either cell adhesion or keratinocyte differentiation, we propose KLK4 as another target of selection in East Asians correlated to tooth and epidermal morphological traits.


The Journal of Urology | 2015

The mutational spectrum of WT1 in male infertility.

Catarina M. Seabra; Sofia Quental; Ana C. Lima; Filipa Carvalho; João Gonçalves; Susana Fernandes; Iris Pereira; Júlia Silva; Patrícia Isabel Marques; Mário Sousa; Alberto Barros; Susana Seixas; António Amorim; Alexandra Lopes

PURPOSE We evaluated the impact of WT1 mutations in isolated severe spermatogenic impairment in a population of European ancestry. WT1 was first identified as the gene responsible for Wilms tumor. It was later associated with a plethora of clinical phenotypes often accompanied by urogenital defects and male infertility. The recent finding of WT1 missense mutations in Chinese azoospermic males without major gonadal malformations broadened the phenotypic spectrum of WT1 defects and motivated this study. MATERIALS AND METHODS We analyzed the WT1 coding region in a cohort of 194 Portuguese patients with nonobstructive azoospermia and in 188 with severe oligozoospermia with increased depth for the exons encoding the regulatory region of the protein. We also analyzed a group of 31 infertile males with a clinical history of unilateral or bilateral cryptorchidism and 1 patient with anorchia. RESULTS We found 2 WT1 missense substitutions at higher frequency in patients than in controls. 1) A novel variant in exon 1 (p.Pro130Leu) that disrupted a mammalian specific polyproline stretch in the self-association domain was more frequent in azoospermia cases (0.27% vs 0.13%, p = 0.549). 2) A rare variant in a conserved residue in close proximity to the first zinc finger (pCys350Arg) was more frequent in severe oligozoospermia cases (0.80% vs 0.13%, p = 0.113). CONCLUSIONS Results suggest a role for rare WT1 damaging variants in severe spermatogenic failure in populations of European ancestry. Large multicenter studies are needed to fully assess the contribution of WT1 genetic alterations to male infertility in the absence of other disease phenotypes.


Journal of Andrology | 2015

Rare double sex and mab-3-related transcription factor 1 regulatory variants in severe spermatogenic failure

Ana C. Lima; Filipa Carvalho; João Gonçalves; Susana Fernandes; Patrícia Isabel Marques; Mário Sousa; Alberto Barros; Susana Seixas; António Amorim; Donald F. Conrad; Alexandra Lopes

The double sex and mab‐3‐related transcription factor 1 (DMRT1) gene has long been linked to sex‐determining pathways across vertebrates and is known to play an essential role in gonadal development and maintenance of spermatogenesis in mice. In humans, the genomic region harboring the DMRT gene cluster has been implicated in disorders of sex development and recently DMRT1 deletions were shown to be associated with non‐obstructive azoospermia (NOA). In this work, we have employed different methods to screen a cohort of Portuguese NOA patients for DMRT1 exonic insertions and deletions [by multiplex ligation probe assay (MLPA); n = 68] and point mutations (by Sanger sequencing; n = 155). We have found three novel patient‐specific non‐coding variants in heterozygosity that were absent from 357 geographically matched controls. One of these is a complex variant with a putative regulatory role (c.‐223_‐219CGAAA>T), located in the promoter region within a conserved sequence involved in Dmrt1 repression. Moreover, while DMRT1 domains are highly conserved across vertebrates and show reduced levels of diversity in human populations, two rare synonymous substitutions (rs376518776 and rs34946058) and two rare non‐coding variants that potentially affect DMRT1 expression and splicing (rs144122237 and rs200423545) were overrepresented in patients when compared with 376 Portuguese controls (301 fertile and 75 normozoospermic). Overall our previous and present results suggest a role of changes in DMRT1 dosage in NOA potentially also through a process of gene misregulation, even though DMRT1 deleterious variants seem to be rare.


Journal of Andrology | 2017

DNA methylation imprinting errors in spermatogenic cells from maturation arrest azoospermic patients

Patrícia Isabel Marques; Susana Fernandes; Filipa Carvalho; Alberto Barros; Mário Sousa; Cristina Joana Marques

Imprinting errors have been described in spermatozoa from infertile patients with oligozoospermia and azoospermia. However, little is known about methylation of imprinted genes in other spermatogenic cells from azoospermic patients. Therefore, we aimed to evaluate the methylation status of single CpGs located in the differentially methylated regions (DMRs) of two imprinted genes, one paternally (H19) and one maternally (MEST) methylated, in primary spermatocytes of azoospermic patients presenting complete (MAc, n = 7) and incomplete (MAi, n = 8) maturation arrest, as well as in other spermatogenic cells from MAi patients that presented focus of complete spermatogenesis in some seminiferous tubules. We observed H19 imprinting errors in primary spermatocytes from one MAi patient and MEST imprinting errors in one MAi and two MAc patients. Additionally, H19 imprinting errors were observed in elongated spermatids/spermatozoa from one MAi patient. Nevertheless, no statistical differences were found for H19 and MEST global methylation levels (percentage of methylated and unmethylated CpGs, respectively) between patients with complete and incomplete MA and also between MA groups and a control group. These results provide further evidence that imprinting errors occur in spermatogenic cells from patients presenting impaired spermatogenesis, as we and others have previously described in ejaculated and testicular spermatozoa. As paternal imprinting errors can be transmitted to the embryo by the sperm cell, they can provide a possible explanation for poor embryo development and/or low pregnancy rates as correct expression of imprinted genes is crucial for embryo and placental development and function. Therefore, in cases with male factor infertility where unsuccessful in vitro fertilization (IVF) treatments are recurrent, analysis of imprinting marks in spermatozoa might be a useful diagnostic tool.


PLOS ONE | 2014

Adaptive Evolution and Divergence of SERPINB3: A Young Duplicate in Great Apes

Sílvia Gomes; Patrícia Isabel Marques; Rune Matthiesen; Susana Seixas

A series of duplication events led to an expansion of clade B Serine Protease Inhibitors (SERPIN), currently displaying a large repertoire of functions in vertebrates. Accordingly, the recent duplicates SERPINB3 and B4 located in human 18q21.3 SERPIN cluster control the activity of different cysteine and serine proteases, respectively. Here, we aim to assess SERPINB3 and B4 coevolution with their target proteases in order to understand the evolutionary forces shaping the accelerated divergence of these duplicates. Phylogenetic analysis of primate sequences placed the duplication event in a Hominoidae ancestor (∼30 Mya) and the emergence of SERPINB3 in Homininae (∼9 Mya). We detected evidence of strong positive selection throughout SERPINB4/B3 primate tree and target proteases, cathepsin L2 (CTSL2) and G (CTSG) and chymase (CMA1). Specifically, in the Homininae clade a perfect match was observed between the adaptive evolution of SERPINB3 and cathepsin S (CTSS) and most of sites under positive selection were located at the inhibitor/protease interface. Altogether our results seem to favour a coevolution hypothesis for SERPINB3, CTSS and CTSL2 and for SERPINB4 and CTSG and CMA1. A scenario of an accelerated evolution driven by host-pathogen interactions is also possible since SERPINB3/B4 are potent inhibitors of exogenous proteases, released by infectious agents. Finally, similar patterns of expression and the sharing of many regulatory motifs suggest neofunctionalization as the best fitted model of the functional divergence of SERPINB3 and B4 duplicates.


American Journal of Reproductive Immunology | 2018

Characterization of microbiota in male infertility cases uncovers differences in seminal hyperviscosity and oligoasthenoteratozoospermia possibly correlated with increased prevalence of infectious bacteria

Catarina Monteiro; Patrícia Isabel Marques; Bruno Cavadas; Isabel Damião; Vasco Almeida; Nuno Barros; Alberto Barros; Filipa Carvalho; Sílvia Gomes; Susana Seixas

Sexually transmitted diseases and other infections of male genitourinary tract are thought to negatively impact reproductive health, affecting semen quality. Despite a possible link between bacteria and infertility, few studies attempted to characterize seminal microbiota in healthy and diseased subjects.


Genome Biology and Evolution | 2018

Genes from the TAS1R and TAS2R Families of Taste Receptors: Looking for Signatures of Their Adaptive Role in Human Evolution

Cristina Valente; Luis Alvarez; Patrícia Isabel Marques; Leonor Gusmão; António Amorim; Susana Seixas; Maria João Prata

Abstract Taste perception is crucial in monitoring food intake and, hence, is thought to play a significant role in human evolution. To gain insights into possible adaptive signatures in genes encoding bitter, sweet, and umami taste receptors, we surveyed the available sequence variation data from the 1000 Genomes Project Phase 3 for TAS1R (TAS1R1-3) and TAS2R (TAS2R16 and TAS2R38) families. Our study demonstrated that genes from these two families have experienced contrasting evolutionary histories: While TAS1R1 and TAS1R3 showed worldwide evidence of positive selection, probably correlated with improved umami and sweet perception, the patterns of variation displayed by TAS2R16 and TAS2R38 were more consistent with scenarios of balancing selection that possibly conferred a heterozygous advantage associated with better capacity to perceive a wide range of bitter compounds. In TAS2R16, such adaptive events appear to have occurred restrictively in mainland Africa, whereas the strongest evidence in TAS2R38 was detected in Europe. Despite plausible associations between taste perception and the TAS1R and TAS2R selective signatures, we cannot discount other biological mechanisms as driving the evolutionary trajectories of those TAS1R and TAS2R members, especially given recent findings of taste receptors behaving as the products of pleiotropic genes involved in many functions outside the gustatory system.

Collaboration


Dive into the Patrícia Isabel Marques's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge