Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia L. Lugar is active.

Publication


Featured researches published by Patricia L. Lugar.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genetic heterogeneity of diffuse large B-cell lymphoma

Jenny Zhang; Vladimir Grubor; Cassandra Love; Anjishnu Banerjee; Kristy L. Richards; Piotr A. Mieczkowski; Cherie H. Dunphy; William W.L. Choi; Wing Y. Au; Gopesh Srivastava; Patricia L. Lugar; David A. Rizzieri; Anand S. Lagoo; Leon Bernal-Mizrachi; Karen P. Mann; Christopher R. Flowers; Kikkeri N. Naresh; Andrew M. Evens; Leo I. Gordon; Magdalena Czader; Javed Gill; Eric D. Hsi; Qingquan Liu; Alice Fan; Katherine Walsh; Dereje D. Jima; Lisa L. Smith; Amy J. Johnson; John C. Byrd; Micah A. Luftig

Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma in adults. The disease exhibits a striking heterogeneity in gene expression profiles and clinical outcomes, but its genetic causes remain to be fully defined. Through whole genome and exome sequencing, we characterized the genetic diversity of DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with matched normal DNA). Separately, we sequenced the exomes of 21 DLBCL cell lines. We identified 322 DLBCL cancer genes that were recurrently mutated in primary DLBCLs. We identified recurrent mutations implicating a number of known and not previously identified genes and pathways in DLBCL including those related to chromatin modification (ARID1A and MEF2B), NF-κB (CARD11 and TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage (IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also experimentally validated a mutation in PIK3CD, a gene not previously implicated in lymphomas. The patterns of mutation demonstrated a classic long tail distribution with substantial variation of mutated genes from patient to patient and also between published studies. Thus, our study reveals the tremendous genetic heterogeneity that underlies lymphomas and highlights the need for personalized medicine approaches to treating these patients.


Nature Genetics | 2012

The genetic landscape of mutations in Burkitt lymphoma

Cassandra Love; Zhen Sun; Dereje D. Jima; Guojie Li; Jenny Zhang; Rodney R. Miles; Kristy L. Richards; Cherie H. Dunphy; William W.L. Choi; Gopesh Srivastava; Patricia L. Lugar; David A. Rizzieri; Anand S. Lagoo; Leon Bernal-Mizrachi; Karen P. Mann; Christopher R. Flowers; Kikkeri N. Naresh; Andrew M. Evens; Amy Chadburn; Leo I. Gordon; Magdalena Czader; Javed Gill; Eric D. Hsi; Adrienne Greenough; Andrea B. Moffitt; Matthew McKinney; Anjishnu Banerjee; Vladimir Grubor; Shawn Levy; David B. Dunson

Burkitt lymphoma is characterized by deregulation of MYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, including ID3, GNA13, RET, PIK3R1 and the SWI/SNF genes ARID1A and SMARCA4. Our data implicate a number of genes in cancer for the first time, including CCT6B, SALL3, FTCD and PC. ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally that ID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicates ID3 as a new tumor suppressor gene.


Blood | 2009

Patterns of microRNA expression characterize stages of human B-cell differentiation

Jenny Zhang; Dereje D. Jima; Cassandra L. Jacobs; Randy T. Fischer; Eva Gottwein; Grace Huang; Patricia L. Lugar; Anand S. Lagoo; David A. Rizzieri; Daphne R. Friedman; J. Brice Weinberg; Peter E. Lipsky; Sandeep S. Dave

Mature B-cell differentiation provides an important mechanism for the acquisition of adaptive immunity. Malignancies derived from mature B cells constitute the majority of leukemias and lymphomas. These malignancies often maintain the characteristics of the normal B cells that they are derived from, a feature that is frequently used in their diagnosis. The role of microRNAs in mature B cells is largely unknown. Through concomitant microRNA and mRNA profiling, we demonstrate a potential regulatory role for microRNAs at every stage of the mature B-cell differentiation process. In addition, we have experimentally identified a direct role for the microRNA regulation of key transcription factors in B-cell differentiation: LMO2 and PRDM1 (Blimp1). We also profiled the microRNA of B-cell tumors derived from diffuse large B-cell lymphoma, Burkitt lymphoma, and chronic lymphocytic leukemia. We found that, in contrast to many other malignancies, common B-cell malignancies do not down-regulate microRNA expression. Although these tumors could be distinguished from each other with use of microRNA expression, each tumor type maintained the expression of the lineage-specific microRNAs. Expression of these lineage-specific microRNAs could correctly predict the lineage of B-cell malignancies in more than 95% of the cases. Thus, our data demonstrate that microRNAs may be important in maintaining the mature B-cell phenotype in normal and malignant B cells.


Journal of Experimental Medicine | 2006

Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein

Chang Hoon Lee; Mark Melchers; Hongsheng Wang; Ted A. Torrey; Rebecca Slota; Chen-Feng Qi; Ji Young Kim; Patricia L. Lugar; Hee Jeong Kong; Lila Farrington; Boris van der Zouwen; Jeff X. Zhou; Vassilios Lougaris; Peter E. Lipsky; Amrie C. Grammer; Herbert C. Morse

Interferon (IFN) consensus sequence-binding protein/IFN regulatory factor 8 (IRF8) is a transcription factor that regulates the differentiation and function of macrophages, granulocytes, and dendritic cells through activation or repression of target genes. Although IRF8 is also expressed in lymphocytes, its roles in B cell and T cell maturation or function are ill defined, and few transcriptional targets are known. Gene expression profiling of human tonsillar B cells and mouse B cell lymphomas showed that IRF8 transcripts were expressed at highest levels in centroblasts, either from secondary lymphoid tissue or transformed cells. In addition, staining for IRF8 was most intense in tonsillar germinal center (GC) dark-zone centroblasts. To discover B cell genes regulated by IRF8, we transfected purified primary tonsillar B cells with enhanced green fluorescent protein–tagged IRF8, generated small interfering RNA knockdowns of IRF8 expression in a mouse B cell lymphoma cell line, and examined the effects of a null mutation of IRF8 on B cells. Each approach identified activation-induced cytidine deaminase (AICDA) and BCL6 as targets of transcriptional activation. Chromatin immunoprecipitation studies demonstrated in vivo occupancy of 5′ sequences of both genes by IRF8 protein. These results suggest previously unappreciated roles for IRF8 in the transcriptional regulation of B cell GC reactions that include direct regulation of AICDA and BCL6.


Blood | 2010

Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs.

Dereje D. Jima; Jenny Zhang; Cassandra L. Jacobs; Kristy L. Richards; Cherie H. Dunphy; William W.L. Choi; Wing Y. Au; Gopesh Srivastava; Magdalena Czader; David A. Rizzieri; Anand S. Lagoo; Patricia L. Lugar; Karen P. Mann; Christopher R. Flowers; Leon Bernal-Mizrachi; Kikkeri N. Naresh; Andrew M. Evens; Leo I. Gordon; Micah A. Luftig; Daphne R. Friedman; J. Brice Weinberg; Michael A. Thompson; Javed Gill; Qingquan Liu; Tam How; Vladimir Grubor; Yuan Gao; Amee Patel; Han Wu; Jun Zhu

A role for microRNA (miRNA) has been recognized in nearly every biologic system examined thus far. A complete delineation of their role must be preceded by the identification of all miRNAs present in any system. We elucidated the complete small RNA transcriptome of normal and malignant B cells through deep sequencing of 31 normal and malignant human B-cell samples that comprise the spectrum of B-cell differentiation and common malignant phenotypes. We identified the expression of 333 known miRNAs, which is more than twice the number previously recognized in any tissue type. We further identified the expression of 286 candidate novel miRNAs in normal and malignant B cells. These miRNAs were validated at a high rate (92%) using quantitative polymerase chain reaction, and we demonstrated their application in the distinction of clinically relevant subgroups of lymphoma. We further demonstrated that a novel miRNA cluster, previously annotated as a hypothetical gene LOC100130622, contains 6 novel miRNAs that regulate the transforming growth factor-β pathway. Thus, our work suggests that more than a third of the miRNAs present in most cellular types are currently unknown and that these miRNAs may regulate important cellular functions.


Blood | 2009

Analysis of somatic hypermutation in X-linked hyper-IgM syndrome shows specific deficiencies in mutational targeting

Nancy S. Longo; Patricia L. Lugar; Sule Yavuz; Wen Zhang; Peter H. L. Krijger; Daniel E. Russ; Dereje D. Jima; Sandeep S. Dave; Amrie C. Grammer; Peter E. Lipsky

Subjects with X-linked hyper-IgM syndrome (X-HIgM) have a markedly reduced frequency of CD27(+) memory B cells, and their Ig genes have a low level of somatic hypermutation (SHM). To analyze the nature of SHM in X-HIgM, we sequenced 209 nonproductive and 926 productive Ig heavy chain genes. In nonproductive rearrangements that were not subjected to selection, as well as productive rearrangements, most of the mutations were within targeted RGYW, WRCY, WA, or TW motifs (R = purine, Y = pyrimidine, and W = A or T). However, there was significantly decreased targeting of the hypermutable G in RGYW motifs. Moreover, the ratio of transitions to transversions was markedly increased compared with normal. Microarray analysis documented that specific genes involved in SHM, including activation-induced cytidine deaminase (AICDA) and uracil-DNA glycosylase (UNG2), were up-regulated in normal germinal center (GC) B cells, but not induced by CD40 ligation. Similar results were obtained from light chain rearrangements. These results indicate that in the absence of CD40-CD154 interactions, there is a marked reduction in SHM and, specifically, mutations of AICDA-targeted G residues in RGYW motifs along with a decrease in transversions normally related to UNG2 activity.


PLOS ONE | 2012

Molecular Characterization of Circulating Plasma Cells in Patients with Active Systemic Lupus Erythematosus

Patricia L. Lugar; Cassandra Love; Amrie C. Grammer; Sandeep S. Dave; Peter E. Lipsky

Systemic lupus erythematosus (SLE) is a generalized autoimmune disease characterized by abnormal B cell activation and the occurrence of increased frequencies of circulating plasma cells (PC). The molecular characteristics and nature of circulating PC and B cells in SLE have not been completely characterized. Microarray analysis of gene expression was used to characterize circulating PC in subjects with active SLE. Flow cytometry was used to sort PC and comparator B cell populations from active SLE blood, normal blood and normal tonsil. The gene expression profiles of the sorted B cell populations were then compared. SLE PC exhibited a similar gene expression signature as tonsil PC. The differences in gene expression between SLE PC and normal tonsil PC and tonsil plasmablasts (PB) suggest a mature Ig secreting cell phenotype in the former population. Despite this, SLE PC differed in expression of about half the genes from previously published gene expression profiles of normal bone marrow PC, indicating that these cells had not achieved a fully mature status. Abnormal expression of several genes, including CXCR4 and S1P1, suggests a mechanism for the persistence of SLE PC in the circulation. All SLE B cell populations revealed an interferon (IFN) gene signature previously only reported in unseparated SLE peripheral blood mononuclear cells. These data indicate that SLE PC are a unique population of Ig secreting cells with a gene expression profile indicative of a mature, but not fully differentiated phenotype.


Journal of Experimental Medicine | 2017

Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2

Andrea B. Moffitt; Sarah L. Ondrejka; Matthew McKinney; Rachel E. Rempel; John R. Goodlad; Chun Huat Teh; Sirpa Leppä; Susanna Mannisto; Panu E. Kovanen; Eric Tse; Rex K.H. Au-Yeung; Yok-Lam Kwong; Gopesh Srivastava; Javeed Iqbal; Jiayu Yu; Kikkeri N. Naresh; Diego Villa; Randy D. Gascoyne; Jonathan W. Said; Magdalena Czader; Amy Chadburn; Kristy L. Richards; Deepthi Rajagopalan; Nicholas S. Davis; Eileen C. Smith; Brooke C. Palus; Tiffany Tzeng; Jane Healy; Patricia L. Lugar; Jyotishka Datta

Enteropathy-associated T cell lymphoma (EATL) is a lethal, and the most common, neoplastic complication of celiac disease. Here, we defined the genetic landscape of EATL through whole-exome sequencing of 69 EATL tumors. SETD2 was the most frequently silenced gene in EATL (32% of cases). The JAK-STAT pathway was the most frequently mutated pathway, with frequent mutations in STAT5B as well as JAK1, JAK3, STAT3, and SOCS1. We also identified mutations in KRAS, TP53, and TERT. Type I EATL and type II EATL (monomorphic epitheliotropic intestinal T cell lymphoma) had highly overlapping genetic alterations indicating shared mechanisms underlying their pathogenesis. We modeled the effects of SETD2 loss in vivo by developing a T cell–specific knockout mouse. These mice manifested an expansion of &ggr;&dgr; T cells, indicating novel roles for SETD2 in T cell development and lymphomagenesis. Our data render the most comprehensive genetic portrait yet of this uncommon but lethal disease and may inform future classification schemes.


Frontiers in Immunology | 2014

Diagnostic Immunization with Bacteriophage ΦX 174 in Patients with Common Variable Immunodeficiency/Hypogammaglobulinemia

Lauren L. Smith; Rebecca H. Buckley; Patricia L. Lugar

Purpose: Use of the T cell-dependent neoantigen bacteriophage ΦX 174 has been described since the 1960s as a method to assess specific antibody response in patients with primary immunodeficiencies. We reviewed a cohort of patients at Duke University Medical Center who received immunization with bacteriophage and report the clinical utility and safety of the immunization, as well as patient characteristics. Methods: A retrospective chart review was performed of all Duke Immunology Clinic patients (pediatric and adult) who received immunizations with bacteriophage, from 1976 to 2012. Subjects were selected for inclusion if their diagnosis at the time of bacteriophage was either presumed or confirmed common variable immunodeficiency (CVID), hypogammaglobulinemia, transient hypogammaglobulinemia, or antibody deficiency unspecified. Follow up post-immunization was also recorded. Results: One hundred twenty-six patients were identified, 36 adults and 90 pediatric patients. Diagnoses prior to bacteriophage were CVID (n = 100), hypogammaglobulinemia (n = 23), and antibody deficiency (n = 3). Post-immunization diagnoses were CVID (n = 65), hypogammaglobulinemia (n = 19), unknown (n = 23), no primary immune deficiency (n = 10), and other primary immunodeficiency (n = 9). Seventy-five patients had abnormal bacteriophage results, 37 were normal, and 14 were borderline. There were 257 recorded administrations of the immunization. Information was available on adverse reactions for 171 administrations. Fourteen immunizations were associated with minor adverse events. Nineteen patients stopped their immunoglobulin replacement therapy based on reported normal responses to immunization. Conclusion: Bacteriophage ΦX 174 immunization is a safe, well-tolerated, and clinically useful method to assess antibody response in patients with suspected antibody-mediated immunodeficiencies, particularly those who are on immunoglobulin replacement therapy at the time of immunization.


The Journal of Allergy and Clinical Immunology | 2017

Cancer in primary immunodeficiency diseases: Cancer incidence in the United States Immune Deficiency Network Registry

P.C. Mayor; Kevin H. Eng; Kelly L. Singel; Scott I. Abrams; Kunle Odunsi; Kirsten B. Moysich; Ramsay L. Fuleihan; Elizabeth Garabedian; Patricia L. Lugar; Hans D. Ochs; Francisco A. Bonilla; Rebecca H. Buckley; Kathleen E. Sullivan; Zuhair K. Ballas; Charlotte Cunningham-Rundles; Brahm H. Segal

Background: We evaluated the overall and site‐specific incidence of cancer in subjects with primary immunodeficiency diseases (PIDD) enrolled in the United States Immune Deficiency Network (USIDNET) registry compared with age‐adjusted cancer incidence in the Surveillance, Epidemiology and End Results Program (SEER) database. Objective: We hypothesized that subjects with PIDD would have an increased incidence of cancer due to impaired immune function. Methods: Overall and site‐specific cancer incidence rates were evaluated in subjects with PIDD (n = 3658) enrolled in the USIDNET registry from 2003 to 2015 and compared with age‐adjusted incidence rates in the SEER database. Results: We observed a 1.42‐fold excess relative risk of cancer in subjects with PIDD compared with the age‐adjusted SEER population (P < .001). Men with PIDD had a 1.91‐fold excess relative risk of cancer compared with the age‐adjusted male population (P < .001), while women with PIDD had similar overall cancer rates compared with the age‐adjusted female population. Of the 4 most common malignancies in men and women in SEER (lung, colon, breast, and prostate cancers), we found no significant increase in these diagnoses in subjects with PIDD. Significant increases in lymphoma in both men (10‐fold increase, P < .001) and women (8.34‐fold increase, P < .001) with PIDD were observed. Conclusions: Excess incidence of cancer occurred in subjects with PIDD. An excess of lymphoma in specific PIDD populations principally drove this increased incidence, while no increased risk of the most common solid tumor malignancies was observed. These data point to a restricted role of the immune system in protecting from specific cancers.

Collaboration


Dive into the Patricia L. Lugar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dereje D. Jima

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter E. Lipsky

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristy L. Richards

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge