Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia M. Rodier is active.

Publication


Featured researches published by Patricia M. Rodier.


The Journal of Comparative Neurology | 1996

Embryological origin for autism: Developmental anomalies of the cranial nerve motor nuclei

Patricia M. Rodier; Jennifer L. Ingram; Barbara Tisdale; Sarah Nelson; John Romano

The underlying brain injury that leads to autism has been difficult to identify. The diagnostic criteria of the disease are not readily associated with any brain region or system, nor are they mimicked by vascular accidents, tumors, or degenerative neurological diseases occurring in adults. Fortuitously, a recent report of autism induced by thalidomide exposure provides evidence that the disease originates by an injury at the time of closure of the neural tube. The human data suggest that the initiating lesion includes the motor cranial nerve nuclei. To test this hypothesis, we first examined motor nuclei in the brainstem of a human autistic case. The autopsy brain exhibited near‐complete absence of the facial nucleus and superior olive along with shortening of the brainstem between the trapezoid body and the inferior olive. A similar deficit has been reported in Hoxa‐1 gene knockout mice in which pattern formation of the hindbrain is disrupted during neurulation. Alternatively, exposure to antimitotic agents just after neural tube closure could produce the observed pattern of deficits. Thus, the lesions observed in the autopsy case appear to match those predicted by the thalidomide cases in both time of origin and central nervous system (CNS) location. To produce similar brain lesions experimentally, we exposed rat embryos to valproic acid, a second teratogen newly linked to autism. Dams received 350 mg/kg of valproic acid (VPA) on day 11.5 (the day of neural tube closure), day 12, or day 12.5 of gestation. Each treatment significantly reduced the number of motor neurons counted in matched sections of the earliest‐forming motor nuclei (V, XII), and progressively later exposures affected the VIth and IIIrd cranial nerve nuclei. All treatments spared the facial nucleus, which forms still later. Counts from the mesencephalic nucleus of trigeminal, the dorsal motor nucleus of the vagus, and the locus ceruleus were not affected by exposure to VPA, even though these nuclei form during the period when exposure occurred. Despite its effects on the motor nuclei, valproic acid exposure did not alter the further development of the brain in any obvious way. Treated animals were robust and had no external malformations. The autopsy data and experimental data from rats confirm that CNS injuries occurring during or just after neural tube closure can lead to a selective loss of neurons derived from the basal plate of the rhombencephalon. The results add two new lines of evidence that place the initiating injury for autism around the time of neural tube closure.


International Journal of Developmental Neuroscience | 2005

The teratology of autism

Tara L. Arndt; Christopher J. Stodgell; Patricia M. Rodier

Autism spectrum disorders affect behaviors that emerge at ages when typically developing children become increasingly social and communicative, but many lines of evidence suggest that the underlying alterations in the brain occur long before the period when symptoms become obvious. Studies of the behavior of children in the first year of life demonstrate that symptoms are often detectable in the first 6 months. The environmental factors known to increase the risk of autism have critical periods of action during embryogenesis. Minor malformations that occur frequently in people with autism are known to arise in the same stages of development. Anomalies reported from histological studies of the brain are consistent with an early alteration of development. Congenital syndromes with high rates of autism include somatic that originate early in the first trimester. In addition, it is possible to duplicate a number of anatomic and behavioral features characteristic of human cases by exposing rat embryos to a teratogenic dose of valproic acid at the time of neural tube closure.


Neurotoxicology and Teratology | 2000

Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism

Jennifer L. Ingram; Stacey M Peckham; Barbara Tisdale; Patricia M. Rodier

Abnormalities in anatomy and function of the cranial nerve motor nuclei have been demonstrated in some people with autism and can be modeled in rats by exposure to valproic acid during neural tube closure. Reductions in Purkinje cell number and cerebellar volume, particularly of the posterior lobe, have also been reported in people with autism. Thus, a stereological examination of cerebellar morphology was undertaken in valproate-exposed rats. Compared to controls, rats exposed to a single dose of 600-mg/kg sodium valproate on embryonic day 12.5 had significantly fewer Purkinje cells in the cerebellar vermis and a reduction short of significant in the hemispheres. The diminished cell numbers reflect reductions in tissue volume throughout the cerebellum, rather than cell density, which was unaffected in all regions. Within the vermis, the reduction in volume was significantly greater in the posterior lobe than in the anterior lobe. The results parallel those reported for human cases of autism.


Journal of the American Academy of Child and Adolescent Psychiatry | 2008

A replication of the Autism Diagnostic Observation Schedule (ADOS) revised algorithms

Katherine Gotham; Susan Risi; Geraldine Dawson; Helen Tager-Flusberg; Robert M. Joseph; Alice S. Carter; Susan Hepburn; William M. McMahon; Patricia M. Rodier; Susan L. Hyman; Marian Sigman; Sally J. Rogers; Rebecca Landa; M. Anne Spence; Kathryn Osann; Pamela Flodman; Fred R. Volkmar; Eric Hollander; Joseph D. Buxbaum; Andrew Pickles; Catherine Lord

OBJECTIVE To replicate the factor structure and predictive validity of revised Autism Diagnostic Observation Schedule algorithms in an independent dataset (N = 1,282). METHOD Algorithm revisions were replicated using data from children ages 18 months to 16 years collected at 11 North American sites participating in the Collaborative Programs for Excellence in Autism and the Studies to Advance Autism Research and Treatment. RESULTS Sensitivities and specificities approximated or exceeded those of the old algorithms except for young children with phrase speech and a clinical diagnosis of pervasive developmental disorders not otherwise specified. CONCLUSIONS Revised algorithms increase comparability between modules and improve the predictive validity of the Autism Diagnostic Observation Schedule for autism cases compared to the original algorithms.


American Journal of Medical Genetics Part A | 2006

Head circumference and height in autism : A study by the collaborative program of excellence in autism

Janet E. Lainhart; Erin D. Bigler; Maureen Bocian; Hilary Coon; Elena Dinh; Geraldine Dawson; Curtis K. Deutsch; Michelle Dunn; Annette Estes; Helen Tager-Flusberg; Susan E. Folstein; Susan Hepburn; Susan L. Hyman; William M. McMahon; Nancy J. Minshew; Jeff Munson; Kathy Osann; Sally Ozonoff; Patricia M. Rodier; Sally J. Rogers; Marian Sigman; M. Anne Spence; Christopher J. Stodgell; Fred R. Volkmar

Data from 10 sites of the NICHD/NIDCD Collaborative Programs of Excellence in Autism were combined to study the distribution of head circumference and relationship to demographic and clinical variables. Three hundred thirty‐eight probands with autism‐spectrum disorder (ASD) including 208 probands with autism were studied along with 147 parents, 149 siblings, and typically developing controls. ASDs were diagnosed, and head circumference and clinical variables measured in a standardized manner across all sites. All subjects with autism met ADI‐R, ADOS‐G, DSM‐IV, and ICD‐10 criteria. The results show the distribution of standardized head circumference in autism is normal in shape, and the mean, variance, and rate of macrocephaly but not microcephaly are increased. Head circumference tends to be large relative to height in autism. No site, gender, age, SES, verbal, or non‐verbal IQ effects were present in the autism sample. In addition to autism itself, standardized height and average parental head circumference were the most important factors predicting head circumference in individuals with autism. Mean standardized head circumference and rates of macrocephaly were similar in probands with autism and their parents. Increased head circumference was associated with a higher (more severe) ADI‐R social algorithm score. Macrocephaly is associated with delayed onset of language. Although mean head circumference and rates of macrocephaly are increased in autism, a high degree of variability is present, underscoring the complex clinical heterogeneity of the disorder. The wide distribution of head circumference in autism has major implications for genetic, neuroimaging, and other neurobiological research.


Neurotoxicology and Teratology | 1990

Methylmercury developmental neurotoxicity: A comparison of effects in humans and animals

Thomas M. Burbacher; Patricia M. Rodier; Bernard Weiss

A qualitative and quantitative comparison of the neuropathological and neurobehavioral effects of early methylmercury (MeHg) exposure is presented. The focus of the qualitative comparison is the examination of how specific end-points (and categories of behavioral functions) compare across species. The focus of the quantitative comparison is the investigation of the relationship between MeHg exposure, target-organ dose and effects in humans and animals. The results of the comparisons are discussed in the context of the adequacy of the proposed EPA neurotoxicity battery to characterize the risk of MeHg to humans. The comparisons reveal several qualitative and quantitative similarities in the neuropathological effects of MeHg on humans and animals at high levels of exposure. Reports of neuropathological effects at lower levels are available for animals only, precluding any comparison. At high levels of exposure, specific neurobehavioral end-points affected across species are also similar. Effects at lower levels of exposure are similar if categories of neurobehavioral functioning are compared. Changes in the EPA test battery consistent with the results of the comparisons are discussed.


Reproductive Toxicology | 1997

Linking etiologies in humans and animal models: Studies of autism

Patricia M. Rodier; Jennifer L. Ingram; Barbara Tisdale; Victoria J. Croog

Thalidomide has been shown to lead to a high rate of autism when exposure occurs during the 20th to 24th d of gestation. Both the critical period and the neurological deficits of the autistic cases indicate that they have sustained injuries to the cranial nerve motor nuclei. To determine whether such lesions characterize other cases of autism, the brain stem of an autistic case was compared to that of a control. The autopsy case showed abnormalities predicted by the thalidomide cases and evidence of shortening of the brain stem, a defect that could have occurred only during neural tube closure. To test whether animals can be similarly injured but remain viable, rats were treated with 350 mg/kg of valproic acid on day 11.5, 12, or 12.5 of gestation. Neuron counts showed reductions of cell numbers in the cranial nerve motor nuclei. Rats with motor neuron deficits also had cerebellar anomalies like those reported in studies of autistic cases, supporting the idea that these animals may be a useful model of the developmental injury that initiates autism.


Teratology | 2000

Discovery of allelic variants of HOXA1 and HOXB1 : Genetic susceptibility to autism spectrum disorders

Jennifer L. Ingram; Christopher J. Stodgell; Susan L. Hyman; Denise A. Figlewicz; Lowell R. Weitkamp; Patricia M. Rodier

BACKGROUND Family studies have demonstrated that the autism spectrum disorders (ASDs) have a major genetic etiologic component, but expression and penetrance of the phenotype are variable. Mice with null mutations of Hoxa1 or Hoxb1, two genes critical to hindbrain development, have phenotypic features frequently observed in autism, but no naturally occurring variants of either gene have been identified in mammals. METHODS By sequencing regions of genomic DNA of patients with autism spectrum disorders, we detected a substitution variant at HOXA1 and an insertion variant at HOXB1, both in coding regions of the genes. Fifty-seven individuals ascertained for a diagnosis of an ASD, along with 166 of their relatives, were typed for these variants. Two non-ASD populations were typed, and the frequency of the newly identified alleles was determined in all groups. The genotypes of the ASD families were tested for conformation to Hardy-Weinberg proportions and Mendelian expectations for gene transmission. RESULTS The frequency of the variants was 10-25% in persons of European or African origin. In the ASD families, there was a significant deviation from the HOXA1 genotype ratios expected from Hardy-Weinberg proportions (P = 0.005). Among affected offspring, a significant deviation from Mendelian expectation in gene transmission (P = 0.011) was observed. No statistically significant effects were detected when the same analyses were applied to the HOXB1 locus, but there was evidence of an interaction between HOXA1, HOXB1, and gender in susceptibility to ASDs. CONCLUSIONS The results support a role for HOXA1 in susceptibility to autism, and add to the existing body of evidence implicating early brain stem injury in the etiology of ASDs.


Developmental Brain Research | 1984

Persistent, differential alterations in developing cerebellar cortex of male and female mice after methylmercury exposure.

Sager Pr; M. Aschner; Patricia M. Rodier

Developing animals have long been believed to be more sensitive to methylmercury toxicity than adults, but the reasons for differential effects are not well understood. In the present study, 2-day-old mice received a single per os dose of 4 mg Hg/kg methylmercury and were sacrificed 24 h or 19 days later. This resulted in a mean brain concentration of 1.8 micrograms Hg/g tissue on day 3 and less than 0.1 micrograms Hg/g on day 21. Compared to littermate vehicle controls, the methylmercury-treated mice exhibited a significant reduction in cell numbers in 1 of 4 regions of the developing cerebellar external granular layer 24 h after treatment. Although the mitotic index over the same 4 regions was not significantly altered by methylmercury treatment, the total number of mitotic figures per section of cerebellum was significantly reduced in the treated group. The ratio of late mitotic figures to total mitotic figures was significantly reduced, indicating mitotic arrest. Both of these antimitotic effects were greater in males than females. Cerebellar structure was also examined 19 days after methylmercury treatment. The number of cells in the molecular layer and thickness of the molecular layer and internal granular layer were significantly reduced in males; the number of Purkinje cells in both sexes and all measures in females remained unaltered. This suggests that early cell loss results in persistent reductions in cell number. Although the basis for the differential effect in males and females is not known, the antimitotic effect of methylmercury is most likely the mechanism underlying the reduced cellularity in treated animals.


Molecular Psychiatry | 2006

Evidence for multiple loci from a genome scan of autism kindreds

Gerard D. Schellenberg; Geraldine Dawson; Yun Ju Sung; Annette Estes; Jeffrey Munson; Elisabeth A. Rosenthal; Joseph H. Rothstein; Pamela Flodman; M. Smith; Hilary Coon; L. Leong; Chang-En Yu; Christopher J. Stodgell; Patricia M. Rodier; M. A. Spence; Nancy J. Minshew; William M. McMahon; Ellen M. Wijsman

We performed a genome-wide linkage scan using highly polymorphic microsatellite markers. To minimize genetic heterogeneity, we focused on sibpairs meeting the strict diagnosis of autism. In our primary analyses, we observed a strong linkage signal (P=0.0006, 133.16 cM) on chromosome 7q at a location coincident with other linkage studies. When a more relaxed diagnostic criteria was used, linkage evidence at this location was weaker (P=0.01). The sample was stratified into families with only male affected subjects (MO) and families with at least one female affected subject (FC). The strongest signal unique to the MO group was on chromosome 11 (P=0.0009, 83.82 cM), and for the FC group on chromosome 4 (P=0.002, 111.41 cM). We also divided the sample into regression positive and regression negative families. The regression-positive group showed modest linkage signals on chromosomes 10 (P=0.003, 0 cM) and 14 (P=0.005, 104.2 cM). More significant peaks were seen in the regression negative group on chromosomes 3 (P=0.0002, 140.06 cM) and 4 (P=0.0005, 111.41 cM). Finally, we used language acquisition data as a quantitative trait in our linkage analysis and observed a chromosome 9 signal (149.01 cM) of P=0.00006 and an empirical P-value of 0.0008 at the same location. Our work provides strong conformation for an autism locus on 7q and suggestive evidence for several other chromosomal locations. Diagnostic specificity and detailed analysis of the autism phenotype is critical for identifying autism loci.

Collaboration


Dive into the Patricia M. Rodier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annette Estes

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey Munson

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge