Patricia Osseweijer
Delft University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia Osseweijer.
Nanoethics | 2010
Johannes F. Jacobs; Ibo van de Poel; Patricia Osseweijer
The risks of novel technologies, such as nano(bio)technology cannot be fully assessed due to the existing uncertainties surrounding their introduction into society. Consequently, the introduction of innovative technologies can be conceptualised as a societal experiment, which is a helpful approach to evaluate moral acceptability. This approach is illustrated with the marketing of sunscreens containing nano-sized titanium dioxide (TiO2) particles. We argue that the marketing of this TiO2 nanomaterial in UV protective cosmetics is ethically undesirable, since it violates four reasonable moral conditions for societal experimentation (absence of alternatives, controllability, limited informed consent, and continuing evaluation). To remedy the current way nano-sized TiO2 containing sunscreens are utilised, we suggest five complementing actions (closing the gap, setup monitoring tools, continuing review, designing for safety, and regulative improvements) so that its marketing can become more acceptable.
Science and Engineering Ethics | 2013
Steven M. Flipse; Maarten C. A. van der Sanden; Patricia Osseweijer
In response to an increasing amount of policy papers stressing the need for integrating social and ethical aspects in Research and Development (R&D) practices, science studies scholars have conducted integrative research and experiments with science and innovation actors. One widely employed integration method is Midstream Modulation (MM), in which an ‘embedded humanist’ interacts in regular meetings with researchers to engage them with the social and ethical aspects of their work. While the possibility of using MM to enhance critical reflection has been demonstrated in academic settings, few attempts have been made to examine its appropriateness in industry. This paper describes the outcomes of a case study aiming to find out firstly whether MM can effectively be deployed to encourage and facilitate researchers to actively include social and ethical aspects in their daily R&D practice, and secondly to what extent the integration activities could form an integral part of the engaged industrial researchers’ professional activities. Our data show that after MM, researchers display increased reflexive awareness on the social and ethical aspects of their work and acknowledge the relevance and utility of such aspects on their daily practice. Also, all participants considered actively reflecting on social and ethical aspects to be part of their work. Future research on the role of MM in industrial settings could focus on how to embed social and ethical integration as a regular part of innovation practice. We suggest that one possibility would be through aligning social and ethical aspects with innovation Key Performance Indicators.
Gcb Bioenergy | 2017
Keith L. Kline; Siwa Msangi; Virginia H. Dale; Jeremy Woods; Glaucia Mendes Souza; Patricia Osseweijer; Joy S. Clancy; Jorge Hilbert; Francis X. Johnson; Pc McDonnell; Harriet K. Mugera
Understanding the complex interactions among food security, bioenergy sustainability, and resource management requires a focus on specific contextual problems and opportunities. The United Nations’ 2030 Sustainable Development Goals place a high priority on food and energy security; bioenergy plays an important role in achieving both goals. Effective food security programs begin by clearly defining the problem and asking, ‘What can be done to assist people at high risk?’ Simplistic global analyses, headlines, and cartoons that blame biofuels for food insecurity may reflect good intentions but mislead the public and policymakers because they obscure the main drivers of local food insecurity and ignore opportunities for bioenergy to contribute to solutions. Applying sustainability guidelines to bioenergy will help achieve near‐ and long‐term goals to eradicate hunger. Priorities for achieving successful synergies between bioenergy and food security include the following: (1) clarifying communications with clear and consistent terms, (2) recognizing that food and bioenergy need not compete for land and, instead, should be integrated to improve resource management, (3) investing in technology, rural extension, and innovations to build capacity and infrastructure, (4) promoting stable prices that incentivize local production, (5) adopting flex crops that can provide food along with other products and services to society, and (6) engaging stakeholders to identify and assess specific opportunities for biofuels to improve food security. Systematic monitoring and analysis to support adaptive management and continual improvement are essential elements to build synergies and help society equitably meet growing demands for both food and energy.
Interface Focus | 2011
Lee R. Lynd; Ramlan Abdul Aziz; Carlos Henrique de Brito Cruz; Annie F.A. Chimphango; L.A.B. Cortez; André Faaij; Nathanael Greene; Martin Keller; Patricia Osseweijer; Tom L. Richard; John Sheehan; Archana Chugh; Luuk A.M. van der Wielen; Jeremy Woods; Willem H. van Zyl
The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the worlds continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: — Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments. — Develop established and advanced bioenergy technologies such that each contributes to the others success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors. — Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences. — Undertake further exploration of land efficiency levers and visions for multiply-beneficial bioenergy deployment. This should be unconstrained by current practices, since we cannot hope to achieve a sustainable and a secure future by continuing the practices that have led to the unsustainable and insecure present. It should also be approached from a global perspective, based on the best science available, and consider the diverse realities, constraints, needs and opportunities extant in different regions of the world. The future trajectory of the GSB project is also briefly considered.
Public Understanding of Science | 2013
Steven M. Flipse; Patricia Osseweijer
Media attention to genetically modified (GM) foods has been described as negative, especially in Europe. At the turn of the century appreciation of GM foods was at an all-time low in Europe. Food manufacturers are still careful in the use, development and communication of GM based food products, and their caution influences innovation processes. In this study we explore the link between media attention and innovation practice. Media attention to three specific high-profile GM food cases is described and linked to innovation practice. We elucidate the order of events in these cases and show that publics could only to a limited extent have formed an opinion on GM based food products based on scientifically valid data through written English media. Innovators in food biotechnology may benefit from this knowledge for future product development and marketing, and we suggest that innovation may benefit from early stakeholder involvement and communication activities.
Science and Engineering Ethics | 2013
Steven M. Flipse; Maarten C. A. van der Sanden; Patricia Osseweijer
New and Emerging Science and Technology (NEST) based innovations, e.g. in the field of Life Sciences or Nanotechnology, frequently raise societal and political concerns. To address these concerns NEST researchers are expected to deploy socially responsible R&D practices. This requires researchers to integrate social and ethical aspects (SEAs) in their daily work. Many methods can facilitate such integration. Still, why and how researchers should and could use SEAs remains largely unclear. In this paper we aim to relate motivations for NEST researchers to include SEAs in their work, and the requirements to establish such integration from their perspectives, to existing approaches that can be used to establish integration of SEAs in the daily work of these NEST researchers. Based on our analyses, we argue that for the successful integration of SEAs in R&D practice, collaborative approaches between researchers and scholars from the social sciences and humanities seem the most successful. The only way to explore whether that is in fact the case, is by embarking on collaborative research endeavours.
Science and Engineering Ethics | 2009
Laurens Landeweerd; Patricia Osseweijer; Julian Kinderlerer
In the perception of technology innovation two world views compete for domination: technological and social determinism. Technological determinism holds that societal change is caused by technological developments, social determinism holds the opposite. Although both were quite central to discussion in the philosophy, history and sociology of technology in the 1970s and 1980s, neither is seen as mainstream now. They do still play an important role as background philosophies in societal debates and offer two very different perspectives on where the responsibilities for an ethically sound development of novel technologies lie. In this paper we will elaborate on these to two opposing views on technology development taking the recent debate on the implementation of biofuels as a case example.
Public Understanding of Science | 2017
Annick de Witt; Patricia Osseweijer; Robin Pierce
Biotechnological innovations prompt a range of societal responses that demand understanding. Research has shown such responses are shaped by individuals’ cultural worldviews. We aim to demonstrate how the Integrative Worldview Framework (IWF) can be used for analyzing perceptions of biotechnology, by reviewing (1) research on public perceptions of biotechnology and (2) analyses of the stakeholder-debate on the bio-based economy, using the Integrative Worldview Framework (IWF) as analytical lens. This framework operationalizes the concept of worldview and distinguishes between traditional, modern, and postmodern worldviews, among others. Applied to these literatures, this framework illuminates how these worldviews underlie major societal responses, thereby providing a unifying understanding of the literature on perceptions of biotechnology. We conclude the IWF has relevance for informing research on perceptions of socio-technical changes, generating insight into the paradigmatic gaps in social science, and facilitating reflexive and inclusive policy-making and debates on these timely issues.
Science and Engineering Ethics | 2014
Steven M. Flipse; Maarten C. A. van der Sanden; Patricia Osseweijer
Policy makers call upon researchers from the natural and social sciences to collaborate for the responsible development and deployment of innovations. Collaborations are projected to enhance both the technical quality of innovations, and the extent to which relevant social and ethical considerations are integrated into their development. This could make these innovations more socially robust and responsible, particularly in new and emerging scientific and technological fields, such as synthetic biology and nanotechnology. Some researchers from both fields have embarked on collaborative research activities, using various Technology Assessment approaches and Socio-Technical Integration Research activities such as Midstream Modulation. Still, practical experience of collaborations in industry is limited, while much may be expected from industry in terms of socially responsible innovation development. Experience in and guidelines on how to set up and manage such collaborations are not easily available. Having carried out various collaborative research activities in industry ourselves, we aim to share in this paper our experiences in setting up and working in such collaborations. We highlight the possibilities and boundaries in setting up and managing collaborations, and discuss how we have experienced the emergence of ‘collaborative spaces.’ Hopefully our findings can facilitate and encourage others to set up collaborative research endeavours.
EMBO Reports | 2014
Steven M. Flipse; Maarten C. A. van der Sanden; Maud Radstake; Johannes H. de Winde; Patricia Osseweijer
The nature and purpose of academic and industrial research has slowly been changing during the past decades. Academic research, in particular of the applied nature, is more frequently done in collaboration with industrial partners and attracts funding from industry or private foundations that support research. Even public funding agencies increasingly require scientists to justify their work by explicitly asking them to clarify potential social relevance. Industrial research and development (R&D) not only needs to come up with sophisticated and competitive new products and services but also has to demonstrate social or environmental responsibility to contribute to a more positive corporate image