Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrícia Reckziegel is active.

Publication


Featured researches published by Patrícia Reckziegel.


Toxicology Letters | 2011

Locomotor damage and brain oxidative stress induced by lead exposure are attenuated by gallic acid treatment

Patrícia Reckziegel; Verônica Tironi Dias; Dalila M. Benvegnú; Nardeli Boufleur; Raquel Cristine Silva Barcelos; Hecson J. Segat; Camila S. Pase; Clarissa Marques Moreira dos Santos; Erico M.M. Flores; Marilise Escobar Bürger

We investigated the antioxidant potential of gallic acid (GA), a natural compound found in vegetal sources, on the motor and oxidative damages induced by lead. Rats exposed to lead (50 mg/kg, i.p., once a day, 5 days) were treated with GA (13.5mg/kg, p.o.) or EDTA (110 mg/kg, i.p.) daily, for 3 days. Lead exposure decreased the locomotor and exploratory activities, reduced blood ALA-D activity, and increased brain catalase (CAT) activity without altering other antioxidant defenses. Brain oxidative stress (OS) estimated by lipid peroxidation (TBARS) and protein carbonyl were increased by lead. GA reversed the motor behavior parameters, the ALA-D activity, as well as the markers of OS changed by lead exposure. CAT activity remained high, possibly as a compensatory mechanism to eliminate hydroperoxides during lead poisoning. EDTA, a conventional chelating agent, was not beneficial on the lead-induced motor behavior and oxidative damages. Both GA (less) and EDTA (more) reduced the lead accumulation in brain tissue. Negative correlations were observed between the behavioral parameters and lipid peroxidation and the lead levels in brain tissue. In conclusion, GA may be an adjuvant in lead exposure, mainly by its antioxidant properties against the motor and oxidative damages resulting from such poisoning.


Brazilian Journal of Medical and Biological Research | 2012

Participation of the GABAergic system in the anesthetic effect of Lippia alba (Mill.) N.E. Brown essential oil

Clarissa G. Heldwein; Lenise de Lima Silva; Patrícia Reckziegel; Francisco Maikon Corrêa de Barros; Marilise Escobar Bürger; Bernardo Baldisserotto; Carlos Augusto Mallmann; Denise Schmidt; Braulio Otomar Caron; Berta Maria Heinzmann

The objective of this study was to identify the possible involvement of the GABAergic system in the anesthetic effect of Lippia alba essential oil (EO). We propose a new animal model using silver catfish (Rhamdia quelen) exposed to an anesthetic bath to study the mechanism of action of EO. To observe the induction and potentiation of the anesthetic effect of EO, juvenile silver catfish (9.30 ± 1.85 g; 10.15 ± 0.95 cm; N = 6) were exposed to various concentrations of L. alba EO in the presence or absence of diazepam [an agonist of high-affinity binding sites for benzodiazepinic (BDZ) sites coupled to the GABAA receptor complex]. In another experiment, fish (N = 6) were initially anesthetized with the EO and then transferred to an anesthetic-free aquarium containing flumazenil (a selective antagonist of binding sites for BDZ coupled to the GABAA receptor complex) or water to assess recovery time from the anesthesia. In this case, flumazenil was used to observe the involvement of the GABA-BDZ receptor in the EO mechanism of action. The results showed that diazepam potentiates the anesthetic effect of EO at all concentrations tested. Fish exposed to diazepam and EO showed faster recovery from anesthesia when flumazenil was added to the recovery bath (12.0 ± 0.3 and 7.2 ± 0.7, respectively) than those exposed to water (9.2 ± 0.2 and 3.5 ± 0.3, respectively). In conclusion, the results demonstrated the involvement of the GABAergic system in the anesthetic effect of L. alba EO on silver catfish.


Neuroscience | 2011

Exercise affects memory acquisition, anxiety-like symptoms and activity of membrane-bound enzyme in brain of rats fed with different dietary fats: impairments of trans fat

Angélica M. Teixeira; Camila S. Pase; Nardeli Boufleur; Kr. Roversi; Raquel Cristine Silva Barcelos; Dalila M. Benvegnú; Hecson J. Segat; Verônica Tironi Dias; Patrícia Reckziegel; Fabíola Trevizol; Geisa S. Dolci; N.R. Carvalho; F.A.A. Soares; João Batista Teixeira da Rocha; Tatiana Emanuelli; Marilise Escobar Bürger

Here we evaluated the influence of physical exercise on behavior parameters and enzymatic status of rats supplemented with different dietary fatty acids (FA). Male Wistar rats fed diets enriched with soybean oil (SO), lard (L), or hydrogenated vegetable fat (HVF) for 48 weeks were submitted to swimming (30 min/d, five times per week) for 90 days. Dietary FA per se did not cause anxiety-like symptoms in the animals, but after physical exercise, SO group showed a better behavioral performance than L and the HVF groups in elevated plus maze (EPM). In Barnes maze, HVF group showed impaired memory acquisition as compared to L group, and exercise reversed this effect. SO-fed rats showed an improvement in memory acquisition after 1 day of training, whereas lard caused an improvement of memory only from day 4. HVF-fed rats showed no improvement of memory acquisition, but this effect was reversed by exercise in all training days. A lower activity of the Na(+)K(+)-ATPase in brain cortex of rats fed lard and HVF was observed, and this effect was maintained after exercise. Similarly, the HVF diet was related to lower activity of hippocampal Na(+)K(+)-ATPase, and exercise reduced activity of this enzyme in the SO and L groups. Our findings show influences of dietary FA on memory acquisition, whereas regular exercise improved this function and was beneficial on anxiety-like symptoms. As FA are present in neuronal membrane phospholipids and play a critical role in brain function, our results suggest that low incorporation of trans FA in neuronal membranes may act on cortical and hippocampal Na(+)K(+)-ATPase activity, but this change appears to be unrelated to the behavioral parameters primarily harmed by consumption of trans and less so by saturated FA, which were reversed by exercise.


Behavioural Brain Research | 2012

Could dietary trans fatty acids induce movement disorders? Effects of exercise and its influence on Na⁺K⁺-ATPase and catalase activity in rat striatum.

Angélica M. Teixeira; Verônica Tironi Dias; Camila S. Pase; Kr. Roversi; Nardeli Boufleur; Raquel Cristine Silva Barcelos; Dalila M. Benvegnú; Fabíola Trevizol; Geisa S. Dolci; N.R. Carvalho; A. Quatrin; Félix Alexandre Antunes Soares; Patrícia Reckziegel; Hecson J. Segat; João Batista Teixeira da Rocha; Tatiana Emanuelli; Marilise Escobar Bürger

The influence of trans fatty acids (FA) on development of orofacial dyskinesia (OD) and locomotor activity was evaluated. Rats were fed with diets enriched with 20% soybean oil (SO; n-6 FA), lard (L; saturated FA) or hydrogenated vegetable fat (HVF; trans FA) for 60 weeks. In the last 12 weeks each group was subdivided into sedentary and exercised (swimming). Brains of HVF and L-fed rats incorporated 0.33% and 0.20% of trans FA, respectively, while SO-fed group showed no incorporation of trans FA. HVF increased OD, while exercise exacerbated this in L and HVF-fed rats. HVF and L reduced locomotor activity, and exercise did not modify. Striatal catalase activity was reduced by L and HVF, but exercise increased its activity in the HVF-fed group. Na(+)K(+)-ATPase activity was not modified by dietary FA, however it was increased by exercise in striatum of SO and L-fed rats. We hypothesized that movement disorders elicited by HVF and less by L could be related to increased dopamine levels in striatum, which have been related to chronic trans FA intake. Exercise increased OD possibly by increase of brain dopamine levels, which generates pro-oxidant metabolites. Thus, a long-term intake of trans FA caused a small but significant brain incorporation of trans FA, which favored development of movement disorders. Exercise worsened behavioral outcomes of HVF and L-fed rats and increased Na(+)K(+)-ATPase activity of L and SO-fed rats, indicating its benefits. HVF blunted beneficial effects of exercise, indicating a critical role of trans FA in brain neurochemistry.


Experimental and Toxicologic Pathology | 2013

Hepatoprotective effects of pecan nut shells on ethanol-induced liver damage

Liz G. Müller; Camila S. Pase; Patrícia Reckziegel; Raquel Cristine Silva Barcelos; Nardeli Boufleur; Ana Cristina Pinheiro do Prado; Roseane Fett; Jane Mara Block; Maria A. Pavanato; Liliane de Freitas Bauermann; João Batista Teixeira da Rocha; Marilise Escobar Bürger

The hepatoprotective activity of the aqueous extract of the shells of pecan nut was investigated against ethanol-induced liver damage. This by-product of the food industry is popularly used to treat toxicological diseases. We evaluated the phytochemical properties of pecan shell aqueous extract (AE) and its in vitro and ex vivo antioxidant activity. The AE was found to have a high content of total polyphenols (192.4±1.9 mg GAE/g), condensed tannins (58.4±2.2 mg CE/g), and antioxidant capacity, and it inhibited Fe(2+)-induced lipid peroxidation (LP) in vitro. Rats chronically treated with ethanol (Et) had increased plasmatic transaminases (ALT, AST) and gamma glutamyl transpeptidase (GGT) levels (96%, 59.13% and 465.9%, respectively), which were effectively prevented (87; 41 and 383%) by the extract (1:40, w/v). In liver, ethanol consumption increased the LP (121%) and decreased such antioxidant defenses as glutathione (GSH) (33%) and superoxide dismutase (SOD) (47%) levels, causing genotoxicity in erythrocytes. Treatment with pecan shell AE prevented the development of LP (43%), GSH and SOD depletion (33% and 109%, respectively) and ethanol-induced erythrocyte genotoxicity. Catalase activity in the liver was unchanged by ethanol but was increased by the extract (47% and 73% in AE and AE+Et, respectively). Therefore, pecan shells may be an economic agent to treat liver diseases related to ethanol consumption.


Behavioural Brain Research | 2011

Comparative study between two animal models of extrapyramidal movement disorders: prevention and reversion by pecan nut shell aqueous extract.

Fabíola Trevizol; Dalila M. Benvegnú; Raquel Cristine Silva Barcelos; Camila S. Pase; Hecson J. Segat; Verônica Tironi Dias; Geisa S. Dolci; Nardeli Boufleur; Patrícia Reckziegel; Marilise Escobar Bürger

Acute reserpine and subchronic haloperidol are animal models of extrapyramidal disorders often used to study parkinsonism, akinesia and tardive dyskinesia. In humans, these usually irreversible and disabling extrapyramidal disorders are developed by typical antipsychotic treatment, whose pathophysiology has been related to oxidative damages development. So far, there is no treatment to prevent these problems of the psychiatric clinic, and therefore further studies are needed. Here we used the animal models of extrapyramidal disorders cited above, which were performed in two distinct experiments: orofacial dyskinesia (OD)/catalepsy induced by acute reserpine and subchronic haloperidol after (experiment 1) and before (experiment 2) oral treatment with pecan shell aqueous extract (AE), a natural and promissory antioxidant. When administered previously (exp.1), the AE prevented OD and catalepsy induced by both reserpine and haloperidol. When reserpine and haloperidol were administered before the extract (exp.2), the animals developed OD and catalepsy all the same. However, the orofacial parameter (but not catalepsy) in both animal models was reversed after 7 and 14 days of AE treatment. These results indicate that, acute reserpine and subchronic haloperidol administrations induced similar motor disorders, although through different mechanisms, and therefore are important animal models to study the physiopathology of extrapyramidal disorders. Comparatively, the pecan shell AE was able to both prevent and reverse OD but only to prevent catalepsy. These results reinforce the role of oxidative stress and validate the two animal models used here. Our findings also favor the idea of prevention of extrapyramidal disorders, rather than their reversal.


European Journal of Pharmaceutics and Biopharmaceutics | 2011

Haloperidol-loaded polysorbate-coated polymeric nanocapsules increase its efficacy in the antipsychotic treatment in rats

Dalila M. Benvegnú; Raquel Cristine Silva Barcelos; Nardeli Boufleur; Patrícia Reckziegel; Camila S. Pase; Aline Ferreira Ourique; Ruy Carlos Ruver Beck; Marilise Escobar Bürger

Haloperidol is an antipsychotic drug associated with the development of movement disorders. We evaluated the effect of its nanoencapsulation on its pharmacological activity and motor side effects. Haloperidol-loaded polysorbate-coated nanocapsules (H-NC) showed nanometric size, negative zeta potential and low polydispersity indices and high encapsulation efficiency (>95%). Rats received a single dose of H-NC (0.2mg/kg ip) and four doses of D,L-amphetamine, AMPH (8.0mg/kg ip), injected every 3h (0, 3, 6 and 9h). The AMPH-induced stereotyped movements were quantified in the intervals of 15 min after each of four doses of AMPH, demonstrating greater pharmacological efficacy of the H-NC over free haloperidol (FH). The acute motor side effects were evaluated 1h after a single dose of H-NC or its free solution (0.2mg/kg ip). The group treated with H-NC presented lower extrapyramidal effects (catalepsy and oral dyskinesia) than those treated with FH. In the last experimental set, rats sub-chronically treated with a daily dose of H-NC (0.2mg/kg ip) for 28 days showed a lower incidence of extrapyramidal effects than those treated with the free drug (0.2mg/kg ip). Our findings showed the potential of using H-NC in the development of a nanomedicine aimed at increasing the efficacy of this antipsychotic drug and reducing its side effects.


Drug Development and Industrial Pharmacy | 2012

Hydrogels containing rutin intended for cutaneous administration: efficacy in wound healing in rats

Juliana S. Almeida; Dalila M. Benvegnú; N. Boufleur; Patrícia Reckziegel; Raquel Cristine Silva Barcelos; K. Coradini; L.M. de Carvalho; M. E. Bürger; Ruy Carlos Ruver Beck

Objective: Development of a hydrogel containing rutin at 0.025% (w/w) and evaluation of its in vivo efficacy in cutaneous wound healing in rats. Methods: Hydrogels were prepared using Carbopol Ultrez® 10 NF and an aqueous dispersion of rutin in polysorbate 80. Hydrogels were characterized by means of pH measurement, rheological and spreadability analysis and rutin content determination by liquid chromatography. The in vivo healing effect was evaluated through the regression of skin lesions in rats and by analysis of oxidative stress. Results and discussion: Hydrogels showed adequate pH values (5.50–6.50) and pseudoplastic non-Newtonian behavior. After 5 days of treatment of wounds, hydrogels containing rutin presented a higher decrease in the wound area compared to the control hydrogels. Analysis of the oxidative stress showed a decrease in lipid peroxidation and protein carbonyl content as well as an increase in catalase activity after the treatment with the hydrogel containing rutin. Furthermore, this treatment increased total protein levels. Conclusion: This study shows for the first time the feasibility of using dermatological formulations containing rutin to improve skin wound healing.


Pharmacology, Biochemistry and Behavior | 2009

Intense exercise potentiates oxidative stress in striatum of reserpine-treated animals.

Angélica M. Teixeira; Patrícia Reckziegel; Liz G. Müller; Romaiana P. Pereira; Daniel Henrique Roos; João Batista Teixeira da Rocha; Marilise Escobar Bürger

Regular physical activity exerts beneficial effects for mental and physical health, but an intense exercise can cause oxidative stress (OS) in dopaminergic regions and intensify the harmful effects of reserpine. Reserpine-induced neurotoxicity can be accessed by behavioral and biochemical evaluations. The objective of this study was to examine the effect of a gradual intensifying exercise program on an animal model of oxidative stress. Male rats were submitted to swimming sessions (1 h/day, for eleven weeks), and they were loaded gradually during the adaptation period (two weeks) with a weight corresponding to 1-7% of their body weight tied to their back. After the last training, the animals were treated with two doses of vehicle or reserpine (1 mg/kg-sc), an agent that induces orofacial dyskinesia. After behavioral evaluations, the striatum was dissected for enzymatic and biochemical assays. Development of cardiac hypertrophy demonstrated the effectiveness of the physical training. The gradual intense exercise and reserpine increased lipid peroxidation and striatal catalase activity. The results confirm the importance of catalase activity in orofacial dyskinesia which can be related to lipid peroxidation in striatal dopaminergic brain tissue. These results indicate that intense exercise can have some deleterious effect on striatal dopaminergic system.


Pharmacology, Biochemistry and Behavior | 2011

Comparative study between n-6, trans and n-3 fatty acids on repeated amphetamine exposure: a possible factor for the development of mania.

Fabíola Trevizol; Dalila M. Benvegnú; Raquel Cristine Silva Barcelos; Nardeli Boufleur; Geisa S. Dolci; Liz G. Müller; Camila S. Pase; Patrícia Reckziegel; Verônica Tironi Dias; Hecson J. Segat; Angélica M. Teixeira; Tatiana Emanuelli; João Batista Teixeira da Rocha; Marilise Escobar Bürger

In the last decades, foods rich in omega-3 (ω-3) fatty acids (FA) have been replaced by omega-6 (ω-6) and trans FA, which are found in processed foods. The influence of ω-6 (soybean oil--SO), trans (hydrogenated vegetable fat--HVF) and ω-3 (fish oil--FO) fatty acids on locomotor and oxidative stress (OS) parameters were studied in an animal model of mania. Rats orally fed with SO, HVF and FO for 8 weeks received daily injections of amphetamine (AMPH--4 mg/kg/mL-ip) for the last week of oral supplementation. HVF induced hyperactivity, increased the protein carbonyl levels in the cortex and decreased the mitochondrial viability in cortex and striatum. AMPH-treatment increased the locomotion and decreased the mitochondrial viability in all groups, but its neurotoxicity was higher in the HVF group. Similarly, AMPH administration increased the protein carbonyl levels in striatum and cortex of HVF-supplemented rats. AMPH reduced the vitamin-C plasmatic levels of SO and HVF-fed rats, whereas no change was observed in the FO group. Our findings suggest that trans fatty acids increased the oxidative damage per se and exacerbated the AMPH-induced effects. The impact of trans fatty acids consumption on neuronal diseases and its consequences in brain functions must be further evaluated.

Collaboration


Dive into the Patrícia Reckziegel's collaboration.

Top Co-Authors

Avatar

Marilise Escobar Bürger

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Nardeli Boufleur

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Camila S. Pase

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Raquel Cristine Silva Barcelos

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Dalila M. Benvegnú

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Angélica M. Teixeira

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Liz G. Müller

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatiana Emanuelli

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Hecson J. Segat

Universidade Federal de Santa Maria

View shared research outputs
Researchain Logo
Decentralizing Knowledge