Nardeli Boufleur
Universidade Federal de Santa Maria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nardeli Boufleur.
Toxicology Letters | 2011
Patrícia Reckziegel; Verônica Tironi Dias; Dalila M. Benvegnú; Nardeli Boufleur; Raquel Cristine Silva Barcelos; Hecson J. Segat; Camila S. Pase; Clarissa Marques Moreira dos Santos; Erico M.M. Flores; Marilise Escobar Bürger
We investigated the antioxidant potential of gallic acid (GA), a natural compound found in vegetal sources, on the motor and oxidative damages induced by lead. Rats exposed to lead (50 mg/kg, i.p., once a day, 5 days) were treated with GA (13.5mg/kg, p.o.) or EDTA (110 mg/kg, i.p.) daily, for 3 days. Lead exposure decreased the locomotor and exploratory activities, reduced blood ALA-D activity, and increased brain catalase (CAT) activity without altering other antioxidant defenses. Brain oxidative stress (OS) estimated by lipid peroxidation (TBARS) and protein carbonyl were increased by lead. GA reversed the motor behavior parameters, the ALA-D activity, as well as the markers of OS changed by lead exposure. CAT activity remained high, possibly as a compensatory mechanism to eliminate hydroperoxides during lead poisoning. EDTA, a conventional chelating agent, was not beneficial on the lead-induced motor behavior and oxidative damages. Both GA (less) and EDTA (more) reduced the lead accumulation in brain tissue. Negative correlations were observed between the behavioral parameters and lipid peroxidation and the lead levels in brain tissue. In conclusion, GA may be an adjuvant in lead exposure, mainly by its antioxidant properties against the motor and oxidative damages resulting from such poisoning.
Neuroscience | 2011
Angélica M. Teixeira; Camila S. Pase; Nardeli Boufleur; Kr. Roversi; Raquel Cristine Silva Barcelos; Dalila M. Benvegnú; Hecson J. Segat; Verônica Tironi Dias; Patrícia Reckziegel; Fabíola Trevizol; Geisa S. Dolci; N.R. Carvalho; F.A.A. Soares; João Batista Teixeira da Rocha; Tatiana Emanuelli; Marilise Escobar Bürger
Here we evaluated the influence of physical exercise on behavior parameters and enzymatic status of rats supplemented with different dietary fatty acids (FA). Male Wistar rats fed diets enriched with soybean oil (SO), lard (L), or hydrogenated vegetable fat (HVF) for 48 weeks were submitted to swimming (30 min/d, five times per week) for 90 days. Dietary FA per se did not cause anxiety-like symptoms in the animals, but after physical exercise, SO group showed a better behavioral performance than L and the HVF groups in elevated plus maze (EPM). In Barnes maze, HVF group showed impaired memory acquisition as compared to L group, and exercise reversed this effect. SO-fed rats showed an improvement in memory acquisition after 1 day of training, whereas lard caused an improvement of memory only from day 4. HVF-fed rats showed no improvement of memory acquisition, but this effect was reversed by exercise in all training days. A lower activity of the Na(+)K(+)-ATPase in brain cortex of rats fed lard and HVF was observed, and this effect was maintained after exercise. Similarly, the HVF diet was related to lower activity of hippocampal Na(+)K(+)-ATPase, and exercise reduced activity of this enzyme in the SO and L groups. Our findings show influences of dietary FA on memory acquisition, whereas regular exercise improved this function and was beneficial on anxiety-like symptoms. As FA are present in neuronal membrane phospholipids and play a critical role in brain function, our results suggest that low incorporation of trans FA in neuronal membranes may act on cortical and hippocampal Na(+)K(+)-ATPase activity, but this change appears to be unrelated to the behavioral parameters primarily harmed by consumption of trans and less so by saturated FA, which were reversed by exercise.
Behavioural Brain Research | 2012
Angélica M. Teixeira; Verônica Tironi Dias; Camila S. Pase; Kr. Roversi; Nardeli Boufleur; Raquel Cristine Silva Barcelos; Dalila M. Benvegnú; Fabíola Trevizol; Geisa S. Dolci; N.R. Carvalho; A. Quatrin; Félix Alexandre Antunes Soares; Patrícia Reckziegel; Hecson J. Segat; João Batista Teixeira da Rocha; Tatiana Emanuelli; Marilise Escobar Bürger
The influence of trans fatty acids (FA) on development of orofacial dyskinesia (OD) and locomotor activity was evaluated. Rats were fed with diets enriched with 20% soybean oil (SO; n-6 FA), lard (L; saturated FA) or hydrogenated vegetable fat (HVF; trans FA) for 60 weeks. In the last 12 weeks each group was subdivided into sedentary and exercised (swimming). Brains of HVF and L-fed rats incorporated 0.33% and 0.20% of trans FA, respectively, while SO-fed group showed no incorporation of trans FA. HVF increased OD, while exercise exacerbated this in L and HVF-fed rats. HVF and L reduced locomotor activity, and exercise did not modify. Striatal catalase activity was reduced by L and HVF, but exercise increased its activity in the HVF-fed group. Na(+)K(+)-ATPase activity was not modified by dietary FA, however it was increased by exercise in striatum of SO and L-fed rats. We hypothesized that movement disorders elicited by HVF and less by L could be related to increased dopamine levels in striatum, which have been related to chronic trans FA intake. Exercise increased OD possibly by increase of brain dopamine levels, which generates pro-oxidant metabolites. Thus, a long-term intake of trans FA caused a small but significant brain incorporation of trans FA, which favored development of movement disorders. Exercise worsened behavioral outcomes of HVF and L-fed rats and increased Na(+)K(+)-ATPase activity of L and SO-fed rats, indicating its benefits. HVF blunted beneficial effects of exercise, indicating a critical role of trans FA in brain neurochemistry.
Experimental and Toxicologic Pathology | 2013
Liz G. Müller; Camila S. Pase; Patrícia Reckziegel; Raquel Cristine Silva Barcelos; Nardeli Boufleur; Ana Cristina Pinheiro do Prado; Roseane Fett; Jane Mara Block; Maria A. Pavanato; Liliane de Freitas Bauermann; João Batista Teixeira da Rocha; Marilise Escobar Bürger
The hepatoprotective activity of the aqueous extract of the shells of pecan nut was investigated against ethanol-induced liver damage. This by-product of the food industry is popularly used to treat toxicological diseases. We evaluated the phytochemical properties of pecan shell aqueous extract (AE) and its in vitro and ex vivo antioxidant activity. The AE was found to have a high content of total polyphenols (192.4±1.9 mg GAE/g), condensed tannins (58.4±2.2 mg CE/g), and antioxidant capacity, and it inhibited Fe(2+)-induced lipid peroxidation (LP) in vitro. Rats chronically treated with ethanol (Et) had increased plasmatic transaminases (ALT, AST) and gamma glutamyl transpeptidase (GGT) levels (96%, 59.13% and 465.9%, respectively), which were effectively prevented (87; 41 and 383%) by the extract (1:40, w/v). In liver, ethanol consumption increased the LP (121%) and decreased such antioxidant defenses as glutathione (GSH) (33%) and superoxide dismutase (SOD) (47%) levels, causing genotoxicity in erythrocytes. Treatment with pecan shell AE prevented the development of LP (43%), GSH and SOD depletion (33% and 109%, respectively) and ethanol-induced erythrocyte genotoxicity. Catalase activity in the liver was unchanged by ethanol but was increased by the extract (47% and 73% in AE and AE+Et, respectively). Therefore, pecan shells may be an economic agent to treat liver diseases related to ethanol consumption.
Behavioural Brain Research | 2011
Fabíola Trevizol; Dalila M. Benvegnú; Raquel Cristine Silva Barcelos; Camila S. Pase; Hecson J. Segat; Verônica Tironi Dias; Geisa S. Dolci; Nardeli Boufleur; Patrícia Reckziegel; Marilise Escobar Bürger
Acute reserpine and subchronic haloperidol are animal models of extrapyramidal disorders often used to study parkinsonism, akinesia and tardive dyskinesia. In humans, these usually irreversible and disabling extrapyramidal disorders are developed by typical antipsychotic treatment, whose pathophysiology has been related to oxidative damages development. So far, there is no treatment to prevent these problems of the psychiatric clinic, and therefore further studies are needed. Here we used the animal models of extrapyramidal disorders cited above, which were performed in two distinct experiments: orofacial dyskinesia (OD)/catalepsy induced by acute reserpine and subchronic haloperidol after (experiment 1) and before (experiment 2) oral treatment with pecan shell aqueous extract (AE), a natural and promissory antioxidant. When administered previously (exp.1), the AE prevented OD and catalepsy induced by both reserpine and haloperidol. When reserpine and haloperidol were administered before the extract (exp.2), the animals developed OD and catalepsy all the same. However, the orofacial parameter (but not catalepsy) in both animal models was reversed after 7 and 14 days of AE treatment. These results indicate that, acute reserpine and subchronic haloperidol administrations induced similar motor disorders, although through different mechanisms, and therefore are important animal models to study the physiopathology of extrapyramidal disorders. Comparatively, the pecan shell AE was able to both prevent and reverse OD but only to prevent catalepsy. These results reinforce the role of oxidative stress and validate the two animal models used here. Our findings also favor the idea of prevention of extrapyramidal disorders, rather than their reversal.
European Journal of Pharmaceutics and Biopharmaceutics | 2011
Dalila M. Benvegnú; Raquel Cristine Silva Barcelos; Nardeli Boufleur; Patrícia Reckziegel; Camila S. Pase; Aline Ferreira Ourique; Ruy Carlos Ruver Beck; Marilise Escobar Bürger
Haloperidol is an antipsychotic drug associated with the development of movement disorders. We evaluated the effect of its nanoencapsulation on its pharmacological activity and motor side effects. Haloperidol-loaded polysorbate-coated nanocapsules (H-NC) showed nanometric size, negative zeta potential and low polydispersity indices and high encapsulation efficiency (>95%). Rats received a single dose of H-NC (0.2mg/kg ip) and four doses of D,L-amphetamine, AMPH (8.0mg/kg ip), injected every 3h (0, 3, 6 and 9h). The AMPH-induced stereotyped movements were quantified in the intervals of 15 min after each of four doses of AMPH, demonstrating greater pharmacological efficacy of the H-NC over free haloperidol (FH). The acute motor side effects were evaluated 1h after a single dose of H-NC or its free solution (0.2mg/kg ip). The group treated with H-NC presented lower extrapyramidal effects (catalepsy and oral dyskinesia) than those treated with FH. In the last experimental set, rats sub-chronically treated with a daily dose of H-NC (0.2mg/kg ip) for 28 days showed a lower incidence of extrapyramidal effects than those treated with the free drug (0.2mg/kg ip). Our findings showed the potential of using H-NC in the development of a nanomedicine aimed at increasing the efficacy of this antipsychotic drug and reducing its side effects.
Stress | 2013
Nardeli Boufleur; Caren T.D. Antoniazzi; Camila S. Pase; Dalila M. Benvegnú; Verônica Tironi Dias; Hecson J. Segat; Katiane Roversi; Karine Roversi; Magali Dalla Nora; Gessi Koakoskia; João Gabriel Santos da Rosa; Leonardo José Gil Barcellos; Marilise Escobar Bürger
This study investigated the influence of neonatal handling on behavioral and biochemical consequences of chronic mild stress (CMS) in adulthood. Male rat pups were submitted to daily tactile stimulation (TS) or maternal separation (MS), from postnatal day 1 (PND1) to postnatal day 21 (PND21), for 10 min/day. In adulthood, half the number of animals were exposed to CMS for 3 weeks and submitted to behavioral testing, including sucrose preference (SP), elevated plus maze (EPM), and defensive burying tasks (DBTs), followed by biochemical assessments. CMS reduced SP, increased anxiety in EPM and DBT, and increased adrenal weight. In addition, CMS decreased plasma vitamin C (VIT C) levels and increased protein carbonyl (PC) levels, catalase (CAT) activity in hippocampus and cortex, and superoxide dismutase (SOD) levels in cortex. In contrast, both forms of neonatal handling were able to prevent reduction in SP, anxiety behavior in DBT, and CMS-induced adrenal weight increase. Furthermore, they were also able to prevent plasma VIT C reduction, hippocampal PC levels increase, CAT activity increase in hippocampus and cortex, and SOD levels increase in cortex following CMS. Only TS was able to prevent CMS-induced anxiety symptoms in EPM and PC levels in cortex. Taken together, these findings show the protective role of neonatal handling, especially TS, which may enhance ability to cope with stressful situations in adulthood.
Pharmacology, Biochemistry and Behavior | 2013
Fábio Teixeira Kuhn; Karine Roversi; Caren T.D. Antoniazzi; Camila S. Pase; Fabíola Trevizol; Raquel Cristine Silva Barcelos; Verônica Tironi Dias; Katiane Roversi; Nardeli Boufleur; Dalila M. Benvegnú; Jaqueline Piccolo; Tatiana Emanuelli; Marilise Escobar Bürger
The current Western diet often provides considerable amounts of saturated and trans fatty acids (TFA), whose incorporation into neuronal membranes has been implicated in changes of brain neurochemical functions. Such influence has caused concerns due to precipitation of neuropsychiatric disorders, whose data are still unclear. Here we evaluated the influence of different fats on preference parameters for amphetamine (AMPH): adolescent rats were orally supplemented with soybean oil (SO, rich in n-6 FA, which was considered an isocaloric control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in saturated and trans FA) from weaning, which were born of dams supplemented with the same fat from pregnancy and lactation. AMPH preference, anxiety-like symptoms and locomotor index were evaluated in conditioned place preference (CPP), elevated plus maze (EPM) and open-field (OF), respectively, while brain oxidative status was determined in cortex, striatum and hippocampus. HVF increased AMPH-CPP and was associated with withdrawal signs, as observed by increased anxiety-like symptoms. Moreover, SO and FO were not associated with AMPH preference, but only FO-supplemented rats did not show any anxiety-like symptoms or increased locomotion. FO supplementation was related to lower oxidative damages to proteins and increased CAT activity in striatum and hippocampus, as well as increased GSH levels in blood, while HVF was related to increased oxidative status. In conclusion, our study showed the harmful influence of TFA on AMPH-CPP and drug craving symptoms, which can be related to dopaminergic neurotransmission.
Pharmacology, Biochemistry and Behavior | 2011
Fabíola Trevizol; Dalila M. Benvegnú; Raquel Cristine Silva Barcelos; Nardeli Boufleur; Geisa S. Dolci; Liz G. Müller; Camila S. Pase; Patrícia Reckziegel; Verônica Tironi Dias; Hecson J. Segat; Angélica M. Teixeira; Tatiana Emanuelli; João Batista Teixeira da Rocha; Marilise Escobar Bürger
In the last decades, foods rich in omega-3 (ω-3) fatty acids (FA) have been replaced by omega-6 (ω-6) and trans FA, which are found in processed foods. The influence of ω-6 (soybean oil--SO), trans (hydrogenated vegetable fat--HVF) and ω-3 (fish oil--FO) fatty acids on locomotor and oxidative stress (OS) parameters were studied in an animal model of mania. Rats orally fed with SO, HVF and FO for 8 weeks received daily injections of amphetamine (AMPH--4 mg/kg/mL-ip) for the last week of oral supplementation. HVF induced hyperactivity, increased the protein carbonyl levels in the cortex and decreased the mitochondrial viability in cortex and striatum. AMPH-treatment increased the locomotion and decreased the mitochondrial viability in all groups, but its neurotoxicity was higher in the HVF group. Similarly, AMPH administration increased the protein carbonyl levels in striatum and cortex of HVF-supplemented rats. AMPH reduced the vitamin-C plasmatic levels of SO and HVF-fed rats, whereas no change was observed in the FO group. Our findings suggest that trans fatty acids increased the oxidative damage per se and exacerbated the AMPH-induced effects. The impact of trans fatty acids consumption on neuronal diseases and its consequences in brain functions must be further evaluated.
Ecotoxicology and Environmental Safety | 2011
Patrícia Reckziegel; Nardeli Boufleur; Raquel Cristine Silva Barcelos; Dalila M. Benvegnú; Camila S. Pase; Liz G. Müller; Angélica M. Teixeira; Renato Zanella; Ana Cristina Pinheiro do Prado; Roseane Fett; Jane Mara Block; Marilise Escobar Bürger
The present study evaluated the role of pecan nut (Carya illinoensis) shells aqueous extract (AE) against oxidative damage induced by cigarette smoke exposure (CSE) and behavioral parameters of smoking withdrawal. Mice were passively exposed to cigarette smoke for 3 weeks (6, 10, and 14 cigarettes/day) and orally treated with AE (25 g/L). CSE induced lipid peroxidation in brain and red blood cells (RBC), increased catalase (CAT) activity in RBC, and decreased plasma ascorbic acid levels. AE prevented oxidative damage and increased antioxidant defenses of mice exposed to cigarette smoke. In addition, AE reduced the locomotor activity and anxiety symptoms induced by smoking withdrawal, and these behavioral parameters showed a positive correlation with RBC lipid peroxidation. Our results showed the beneficial effects of this by-product of the pecan industry, indicating its usefulness in smoking cessation.