Patricia Vicendo
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patricia Vicendo.
Photodermatology, Photoimmunology and Photomedicine | 2003
Christelle Gélis; Stéphanie Girard; Alain Mavon; Maxence Delverdier; Nicole Paillous; Patricia Vicendo
UV irradiation can cause cutaneous damage that may be specific according to the wavelength of UV rays. For example, damage from UVB irradiation manifests itself in the form of sunburn cells and enhancement of the expression of p53, while damage from UVA exposure results in an increase in the expression of vimentin. These reactions to UV irradiation were used in this work to evaluate the photoprotective capacities of two sunblock preparations that were applied to the surface of the skin. One sunblock preparation is a UVB absorber containing zinc oxide (ZnO) and titanium oxide (TiO2) exclusively. The other sunblock preparation is a new organo‐mineral sunblock containing Tinosorb™ M, OCM, ZnO and TiO2. Evaluation of the photoprotective capacities of both preparations on hairless rat skin and on in vitro reconstructed human epidermis revealed that they were effective in preventing UVB‐induced damage. In contrast, only the organo‐mineral sunblock was effective in the prevention of UVA‐specific damage such as dermal alterations characterized by the expression of vimentin. Furthermore, our data support the fact that hairless rat skin and in vitro reconstructed human epidermis are a reliable basis for the evaluation of the photoprotective capacities of various sunscreens against UVB and UVA damage.
Inorganic Chemistry | 2008
Fabienne Alary; Martial Boggio-Pasqua; Jean-Louis Heully; Colin J. Marsden; Patricia Vicendo
We present a theoretical study of the ground and the lowest triplet excited states of the tris-(1,4,5,8-tetraazaphenanthrene) ruthenium complex [Ru(tap)3]2+. Density functional theory (DFT) was used to obtain the relaxed geometries and emission energies (Delta-SCF), whereas time-dependent DFT (TD-DFT) was used to compute the absorption spectrum. Our calculations have revealed the presence of three low-lying excited-state minima, which may be relevant in the photophysical/photochemical properties of this complex. Two minima with similar energies correspond to the MLCT 3A2 and MLCT 3B metal-to-ligand charge-transfer states, the first one corresponding to a D3 structure, whereas the second is a slightly localized C2 species. The third and lowest one corresponds to the metal-centered MC 3A state and displays a pronounced C2 distortion. We have examined for the first time the localized character of the excitation in the computed MLCT states. In particular, we have evaluated the pseudorotation barrier between the Jahn-Teller C2 MLCT 3B minima in the moat around the D3 conical intersection. We have shown that the complex should be viewed as a delocalized [Ru3+(tap(-1/3))3]2+ complex in the lowest MLCT states, in agreement with subpicosecond interligand electron transfer observed by femtosecond transient absorption anisotropy study. Upper-bound estimates of the MLCT-->MC (3 kcal/mol) and MC-->MLCT (10 kcal/mol) activation energy barriers obtained from potential energy profiles in vacuum corroborate the high photoinstability of the MLCT states of the [Ru(tap)3]2+complex.
Free Radical Biology and Medicine | 2009
Caroline Prouillac; Patricia Vicendo; Jean-Christophe Garrigues; Romuald Poteau; Ghassoub Rima
Thiol and aminothiol compounds are among the most efficient chemical radioprotectors. To increase their efficiency, we synthesized two new classes of thiol and aminothiol compounds derived from benzothiazole (T1, T2, AM1, AM2) and thiadiazole (T3, T4, AM3) structures. We examined them for their ability to scavenge free radicals (DPPH*, ABTS(*+), *OH). Thiol derivatives with a thiadiazole structure are the most active compounds scavenging DPPH* and ABTS(*+) free radicals, with an IC(50) of 0.053+/-0.006 and 0.023+/-0.002 mM, respectively, for the derivative T3. Moreover, compounds T1, T2, and T3 at 60 microM gave 83% protection against 2-deoxyribose degradation by *OH. The ability of these compounds to protect DNA against *OH produced by a Fenton reaction and gamma-irradiation (15 Gy)-induced strand breaks was also evaluated on pBR322 plasmid DNA. In both tests thiol derivatives were the most efficient compounds. Derivatives T2 and T3 totally inhibit DNA strand breaks at the concentration of 50 microM. The protection afforded by these derivatives was comparatively higher than that of the radioprotectors WR-2721 and WR-1065. Our data indicate that these two compounds are free radical scavengers and potential antioxidant agents. Finally, DFT and QSAR studies were performed to support the experimental observations.
Journal of Photochemistry and Photobiology B-biology | 1993
Nicole Paillous; Patricia Vicendo
Abstract Photosensitization may promote DNA damages such as nucleic acid oxidation or single strand breaks via three main pathways: hydroxyl radicals attack, electron transfer process or oxidation by singlet oxygen. While direct production of OH. by photosensitization is rarely observed, the mechanism of DNA attack by OH. is now well established on the basis of informations provided by water radiolysis experiments. Some dyes may also induce single strand breaks via an electron transfer occurring from a nucleobase to the sensitizer in the excited state. This process generates base radical cations identical to those arising from DNA photoionisation. These radicals may undergo deprotonation or dehydration to form the same neutral radicals as those produced by OH. but with a slightly different pattern. In contrast, while many sensitizers produce singlet oxygen, the mechanism of DNA damages induced by this way is still unclear. In this case the guanine moiety in nucleosides or in DNA is selectively altered leading to the formation of 8 oxoG or 8 oxodG and FapyGua. The mechanism of single strand breaks formation by singlet oxygen is discussed in this overview.
Biomacromolecules | 2014
Laure Gibot; Arnaud Lemelle; Ugo Till; Béatrice Moukarzel; Anne-Françoise Mingotaud; Véronique Pimienta; Pascale Saint-Aguet; Marie-Pierre Rols; Mireille Gaucher; Frédéric Violleau; Christophe Chassenieux; Patricia Vicendo
Various polymeric micelles were formed from amphiphilic block copolymers, namely, poly(ethyleneoxide-b-ε-caprolactone), poly(ethyleneoxide-b-d,l-lactide), and poly(ethyleneoxide-b-styrene). The micelles were characterized by static and dynamic light scattering, electron microscopy, and asymmetrical flow field-flow fractionation. They all displayed a similar size close to 20 nm. The influence of the chemical structure of the block copolymers on the stability upon dilution of the polymeric micelles was investigated to assess their relevance as carriers for nanomedicine. In the same manner, the stability upon aging was assessed by FRET experiments under various experimental conditions (alone or in the presence of blood proteins). In all cases, a good stability over 48 h for all systems was encountered, with PDLLA copolymer-based systems being the first to release their load slowly. The cytotoxicity and photocytotoxicity of the carriers were examined with or without their load. Lastly, the photodynamic activity was assessed in the presence of pheophorbide a as photosensitizer on 2D and 3D tumor cell culture models, which revealed activity differences between the 2D and 3D systems.
Free Radical Biology and Medicine | 2013
Andrés H. Thomas; Mariana P. Serrano; Virginie Rahal; Patricia Vicendo; Catherine Claparols; Esther Oliveros; Carolina Lorente
Pterins are normal components of cells and they have been previously identified as good photosensitizers under UV-A irradiation, inducing DNA damage and oxidation of nucleotides. In this work, we have investigated the ability of pterin (Ptr), the parent compound of oxidized pterins, to photosensitize the oxidation of another class of biomolecules, amino acids, using tryptophan (Trp) as a model compound. Irradiation of Ptr in the UV-A spectral range (350 nm) in aerated aqueous solutions containing Trp led to the consumption of the latter, whereas the Ptr concentration remained unchanged. Concomitantly, hydrogen peroxide (H₂O₂) was produced. Although Ptr is a singlet oxygen ((1)O₂) sensitizer, the degradation of Trp was inhibited in O₂-saturated solutions, indicating that a (1)O₂-mediated process (type II oxidation) was not an important pathway leading to Trp oxidation. By combining different analytical techniques, we could establish that a type I photooxidation was the prevailing mechanism, initiated by an electron transfer from the Trp molecule to the Ptr triplet excited state, yielding the corresponding radical ions (Trp(·+)/Trp(-H)· and Ptr(·-)). The Trp reaction products that could be identified by UPLC-mass spectrometry are in agreement with this conclusion.
Free Radical Biology and Medicine | 2010
M. Laura Dántola; Mariana Vignoni; Constanza González; Carolina Lorente; Patricia Vicendo; Esther Oliveros; Andrés H. Thomas
Pterins (Pt) are heterocyclic compounds widespread in living systems. They participate in relevant biological processes, such as metabolic redox reactions, and can photoinduce the oxidation of biomolecules through electron-transfer mechanisms. We have investigated the electron-transfer pathways initiated by excited states of pterin (Ptr) and 6-methylpterin (Mep), selected as model compounds. The experiments were carried out in aqueous solutions under continuous UV-A irradiation, in the presence and in the absence of ethylenediaminetetraacetic acid (EDTA), used as an electron donor. The reactions were followed by UV/Vis spectrophotometry, HPLC, and an enzymatic method for H(2)O(2) determination. The formation of the superoxide anion (O(2)(*-)) was investigated by electron paramagnetic resonance-spin trapping. The triplet excited states of Ptr and Mep are efficient electron acceptors, able to oxidize a Pt molecule in its ground state. The resulting radical anion (Pt(*-)) reacts with dissolved O(2) to yield O(2)(*-), regenerating the pterin. In the presence of EDTA, this reaction competes efficiently with the anaerobic reaction between Pt(*-) and EDTA(*+), yielding the corresponding stable dihydroderivatives H(2)Pt. The effects of EDTA and dissolved O(2) concentrations on the efficiencies of the different competing pathways were analyzed.
Chemistry: A European Journal | 2009
Kamil Rahme; Patricia Vicendo; Cédric Ayela; Cédric Gaillard; Bruno Payré; Christophe Mingotaud; Fabienne Gauffre
Di- and triblock non-ionic copolymers based on poly(ethylene oxide) and poly(propylene oxide) were studied for the stabilization of nanoparticles in water at high ionic strength. The effect of the molecular architecture (di- vs. triblock) of these amphiphilic copolymers was investigated by using gold nanoparticles (AuNPs) as probes for colloidal stability. The results demonstrate that both di- and triblock copolymers can provide long term stability, and that in both cases AuNPs are individually embedded within globules of polymers. However, in the case of diblock copolymers, the colloidal stability was related to the formation of micelles, in contrast with the case of triblock copolymers, which were previously shown to provide good stability even at concentrations at which micelles do not form. Quartz crystal microbalance (QCM) experiments showed that the presence of the hydrophobic block in the structure of the polymer is important to ensure quantitative adsorption upon a gold surface and to limit desorption. We demonstrate that with an appropriate choice of polymer, the polymer/AuNP hybrids can also undergo filtration and freeze-drying without noticeable aggregation, which can be very convenient for further applications. Finally, preliminary studies of the cytotoxicity effect on fibroblast cells show that the polymer/AuNP hybrids were not cytotoxic. TEM micrographs on ultrathin sections of cells after incubation with the colloidal solutions show that the nanoparticles were internalized into the cells, conserving their initial size and shape.
Photochemistry and Photobiology | 2002
Christelle Gélis; Alain Mavon; Maxence Delverdier; Nicole Paillous; Patricia Vicendo
Abstract The effect of solar irradiation on ex vivo dermatomed hairless rat skin samples maintained in culture on flow-through diffusion cells for at least 24 h was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and by histological observations. Transepidermal water loss (TEWL) measurements and kinetic analysis of the permeation of both tritiated water and 14C caffeine through the skin were performed after full-spectrum solar exposure involving the use of a xenon arc solar simulator. After a UV exposure of less than 420 mJ/cm2, skin integrity and permeation of both water and caffeine did not change significantly. In contrast, after a 420 mJ/cm2 UV exposure, the epidermis appeared more contracted, associated with an increase of 55% of TEWL and 220% of the skin permeation of tritiated water after 6 h. The data suggested a dramatic alteration of the skin barrier integrity. Moreover, the flux of 14C caffeine increased rapidly by 338% of the absorption of water 12 h after irradiation. These results reveal the presence of a threshold UV exposure that would not modify skin penetration.
Photochemistry and Photobiology | 2000
Etienne Gicquel; Nicole Paillous; Patricia Vicendo
Abstract Trisbipyrazyl ruthenium(II) (Ru[bpz]32+) was examined as DNA photosensitizer. Damage resulting from the photolysis of synthetic oligonucleotides has been monitored by polyacrylamide gel electrophoresis. Photoadduct formation is found on both single- and double-stranded oligonucleotides. On oligonucleotide duplex, oxidative damage occurs selectively at the 5′G of the 5′GG3′ site and to a lesser extent at the 5′G of a GA sequence. These findings suggest the involvement of electron transfer and show that this mechanism is the main DNA damaging process involved in Ru(bpz)32+ photosensitization. In addition, photoadducts and oxidative damage are both highly affected by an increase of salt concentration in the reaction medium, stressing the importance of direct interactions between nucleic acid bases and the excited ruthenium complex for efficient electron transfer. On single-stranded oligonucleotides, all the guanines are oxidized to the same extent. In this case, oxidative damage, which is not affected by an increase of salt in the solution, has been attributed, in part, to singlet oxygen. More importantly, Cu/Zn superoxide dismutase (SOD) strongly enhances the yield of all damage, correlated to an increase of both electron transfer and singlet oxygen production. This original activity of SOD is the first example of bioactivation of a polyazaaromatic ruthenium complex.