Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick A. Singleton is active.

Publication


Featured researches published by Patrick A. Singleton.


Journal of Biological Chemistry | 2005

Activated protein C mediates novel lung endothelial barrier enhancement: Role of sphingosine 1-phosphate receptor transactivation

James H. Finigan; Steven M. Dudek; Patrick A. Singleton; Eddie T. Chiang; Jeffrey R. Jacobson; Sara M. Camp; Shiu Q. Ye; Joe G. N. Garcia

Increased endothelial cell (EC) permeability is central to the pathophysiology of inflammatory syndromes such as sepsis and acute lung injury (ALI). Activated protein C (APC), a serine protease critically involved in the regulation of coagulation and inflammatory processes, improves sepsis survival through an unknown mechanism. We hypothesized a direct effect of APC to both prevent increased EC permeability and to restore vascular integrity after edemagenic agonists. We measured changes in transendothelial electrical resistance (TER) and observed that APC produced concentration-dependent attenuation of TER reductions evoked by thrombin. We next explored known EC barrier-protective signaling pathways and observed dose-dependent APC-mediated increases in cortical myosin light chain (MLC) phosphorylation in concert with cortically distributed actin polymerization, findings highly suggestive of Rac GTPase involvement. We next determined that APC directly increases Rac1 activity, with inhibition of Rac1 activity significantly attenuating APC-mediated barrier protection to thrombin challenge. Finally, as these signaling events were similar to those evoked by the potent EC barrier-enhancing agonist, sphingosine 1-phosphate (S1P), we explored potential cross-talk between endothelial protein C receptor (EPCR) and S1P1, the receptors for APC and S1P, respectively. EPCR-blocking antibody (RCR-252) significantly attenuated both APC-mediated barrier protection and increased MLC phosphorylation. We next observed rapid, EPCR and PI 3-kinase-dependent, APC-mediated phosphorylation of S1P1 on threonine residues consistent with S1P1 receptor activation. Co-immunoprecipitation studies demonstrate an interaction between EPCR and S1P1 upon APC treatment. Targeted silencing of S1P1 expression using siRNA significantly reduced APC-mediated barrier protection against thrombin. These data suggest that novel EPCR ligation and S1P1 transactivation results in EC cytoskeletal rearrangement and barrier protection, components potentially critical to the improved survival of APC-treated patients with severe sepsis.


Journal of Biological Chemistry | 2006

Hyaluronan-CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells.

Lilly Y. W. Bourguignon; Eli Gilad; Amy Brightman; Falko Diedrich; Patrick A. Singleton

In this study we have examined the interaction of CD44 (a major hyaluronan (HA) receptor) with a RhoA-specific guanine nucleotide exchange factor (leukemia-associated RhoGEF (LARG)) in human head and neck squamous carcinoma cells (HNSCC-HSC-3 cell line). Immunoprecipitation and immunoblot analyses indicate that CD44 and the LARG protein are expressed in HSC-3 cells and that these two proteins are physically associated as a complex. HA-CD44 binding induces LARG-specific RhoA signaling and phospholipase Cϵ (PLCϵ) activity. In particular, the activation of RhoA-PLCϵ by HA stimulates inositol 1,4,5-triphosphate production, intracellular Ca2+ mobilization, and the up-regulation of Ca2+/calmodulin-dependent kinase II (CaMKII), leading to phosphorylation of the cytoskeletal protein, filamin. The phosphorylation of filamin reduces its interaction with filamentous actin, promoting tumor cell migration. The CD44-LARG complex also interacts with the EGF receptor (EGFR). Most importantly, the binding of HA to the CD44-LARG-EGFR complex activates the EGFR receptor kinase, which in turn promotes Ras-mediated stimulation of a downstream kinase cascade including the Raf-1 and ERK pathways leading to HNSCC cell growth. Using a recombinant fragment of LARG (the LARG-PDZ domain) and a binding assay, we have determined that the LARG-PDZ domain serves as a direct linker between CD44 and EGFR. Transfection of the HSC-3 cells with LARG-PDZcDNA significantly reduces LARG association with CD44 and EGFR. Overexpression of the LARG-PDZ domain also functions as a dominant-negative mutant (similar to the PLC/Ca2+-calmodulin-dependent kinase II (CaMKII) and EGFR/MAPK inhibitor effects) to block HA/CD44-mediated signaling events (e.g. EGFR kinase activation, Ras/RhoA co-activation, Raf-ERK signaling, PLCϵ-mediated inositol 1,4,5-triphosphate production, intracellular Ca2+ mobilization, CaMKII activity, filamin phosphorylation, and filamin-actin binding) and to abrogate tumor cell growth/migration. Taken together, our findings suggest that CD44 interaction with LARG and EGFR plays a pivotal role in Rho/Ras co-activation, PLCϵ-Ca2+ signaling, and Raf/ERK up-regulation required for CaMKII-mediated cytoskeleton function and in head and neck squamous cell carcinoma progression.


Journal of Biological Chemistry | 2002

Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor β receptor I in metastatic breast tumor cells

Lilly Y. W. Bourguignon; Patrick A. Singleton; Hongbo Zhu; Bo Zhou

In this study we have examined the interaction between CD44 (a hyaluronan (HA) receptor) and the transforming growth factor β (TGF-β) receptors (a family of serine/threonine kinase membrane receptors) in human metastatic breast tumor cells (MDA-MB-231 cell line). Immunological data indicate that both CD44 and TGF-β receptors are expressed in MDA-MB-231 cells and that CD44 is physically linked to the TGF-β receptor I (TGF-βRI) (and to a lesser extent to the TGF-β receptor II (TGF-βRII)) as a complex in vivo. Scatchard plot analyses and in vitro binding experiments show that the cytoplasmic domain of CD44 binds to TGF-βRI at a single site with high affinity (an apparent dissociation constant (K d ) of ∼1.78 nm). These findings indicate that TGF-βRI contains a CD44-binding site. Furthermore, we have found that the binding of HA to CD44 in MDA-MB-231 cells stimulates TGF-βRI serine/threonine kinase activity which, in turn, increases Smad2/Smad3 phosphorylation and parathyroid hormone-related protein (PTH-rP) production (well known downstream effector functions of TGF-β signaling). Most importantly, TGF-βRI kinase activated by HA phosphorylates CD44, which enhances its binding interaction with the cytoskeletal protein, ankyrin, leading to HA-mediated breast tumor cell migration. Overexpression of TGF-βRI by transfection of MDA-MB-231 cells with TGF-βRIcDNA stimulates formation of the CD44·TGF-βRI complex, the association of ankyrin with membranes, and HA-dependent/CD44-specific breast tumor migration. Taken together, these findings strongly suggest that CD44 interaction with the TGF-βRI kinase promotes activation of multiple signaling pathways required for ankyrin-membrane interaction, tumor cell migration, and important oncogenic events (e.g.Smad2/Smad3 phosphorylation and PTH-rP production) during HA and TGF-β-mediated metastatic breast tumor progression.


Journal of Biological Chemistry | 2006

Transactivation of Sphingosine 1-Phosphate Receptors Is Essential for Vascular Barrier Regulation NOVEL ROLE FOR HYALURONAN AND CD44 RECEPTOR FAMILY

Patrick A. Singleton; Steven M. Dudek; Shwu Fan Ma; Joe G. N. Garcia

The role for hyaluronan (HA) and CD44 in vascular barrier regulation is unknown. We examined high and low molecular weight HA (HMW-HA, ∼1,000 kDa; LMW-HA, ∼2.5 kDa) effects on human transendothelial monolayer electrical resistance (TER). HMW-HA increased TER, whereas LMW-HA induced biphasic TER changes ultimately resulting in EC barrier disruption. HMW-HA induced the association of the CD44s isoform with, and AKT-mediated phosphorylation of, the barrier-promoting sphingosine 1-phosphate receptor (S1P1) within caveolin-enriched lipid raft microdomains, whereas LMW-HA induced brief CD44s association with S1P1 followed by sustained association of the CD44v10 isoform with, and Src and ROCK 1/2-mediated phosphorylation of, the barrier-disrupting S1P3 receptor. HA-induced EC cytoskeletal reorganization and TER alterations were abolished by either disruption of lipid raft formation, CD44 blocking antibody or siRNA-mediated reductions in expression of CD44 isoforms. Silencing S1P1, AKT1, or Rac1 blocked the barrier enhancing effects of HA whereas silencing S1P3, Src, ROCK1/2, or RhoA blocked the barrier disruption induced by LMW-HA. In summary, HA regulates EC barrier function through novel differential CD44 isoform interaction with S1P receptors, S1P receptor transactivation, and RhoA/Rac1 signaling to the EC cytoskeleton.


Anesthesia & Analgesia | 2011

The novel role of the mu opioid receptor in lung cancer progression: a laboratory investigation.

Biji Mathew; Frances E. Lennon; Jessica Siegler; Tamara Mirzapoiazova; Nurbek Mambetsariev; Saad Sammani; Lynnette M. Gerhold; Patrick J. LaRiviere; Chin-Tu Chen; Joe G. N. Garcia; Ravi Salgia; Jonathan Moss; Patrick A. Singleton

BACKGROUND:The possibility that &mgr; opioid agonists can influence cancer recurrence is a subject of recent interest. Epidemiologic studies suggested that there were differences in cancer recurrence in breast and prostate cancer contingent on anesthetic regimens. In this study, we identify a possible mechanism for these epidemiologic findings on the basis of &mgr; opioid receptor (MOR) regulation of Lewis lung carcinoma (LLC) tumorigenicity in cell and animal models. METHODS:We used human lung tissue and human non–small cell lung cancer (NSCLC) cell lines and evaluated MOR expression using immunoblot and immunohistochemical analysis. LLC cells were treated with the peripheral opioid antagonist methylnaltrexone (MNTX) or MOR shRNA and evaluated for proliferation, invasion, and soft agar colony formation in vitro and primary tumor growth and lung metastasis in C57BL/6 and MOR knockout mice using VisEn fluorescence mediated tomography imaging and immunohistochemical analysis. RESULTS:We provide several lines of evidence that the MOR may be a potential target for lung cancer, a disease with high mortality and few treatment options. We first observed that there is ∼5- to 10-fold increase in MOR expression in lung samples from patients with NSCLC and in several human NSCLC cell lines. The MOR agonists morphine and [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) increased in vitro LLC cell growth. Treatment with MNTX or silencing MOR expression inhibited LLC invasion and anchorage-independent growth by 50%–80%. Injection of MOR silenced LLC lead to a ∼65% reduction in mouse lung metastasis. In addition, MOR knockout mice do not develop significant tumors when injected with LLC in comparison with wild-type controls. Finally, continuous infusion of the peripheral opioid antagonist MNTX attenuates primary LLC tumor growth and reduces lung metastasis. CONCLUSIONS:Taken together, our data suggest a possible direct effect of opiates on lung cancer progression, and provide a plausible explanation for the epidemiologic findings. Our observations further suggest a possible therapeutic role for opioid antagonists.


Clinical Cancer Research | 2009

Ethnic Differences and Functional Analysis of MET Mutations in Lung Cancer

Soundararajan Krishnaswamy; Rajani Kanteti; Jonathan S. Duke-Cohan; Sivakumar Loganathan; Wanqing Liu; Patrick C. Ma; Martin Sattler; Patrick A. Singleton; Nithya Ramnath; Federico Innocenti; Dan L. Nicolae; Zheng Ouyang; Jie Liang; John D. Minna; Mark Kozloff; Mark K. Ferguson; Viswanathan Natarajan; Yi Ching Wang; Joe G. N. Garcia; Everett E. Vokes; Ravi Salgia

Purpose: African Americans have higher incidence and poorer response to lung cancer treatment compared with Caucasians. However, the underlying molecular mechanisms for the significant ethnic difference are not known. The present study examines the ethnic differences in the type and frequency of MET proto-oncogene (MET) mutation in lung cancer and correlated them with other frequently mutated genes such as epidermal growth factor receptor (EGFR), KRAS2, and TP53. Experimental Design: Using tumor tissue genomic DNA from 141 Asian, 76 Caucasian, and 66 African American lung cancer patients, exons coding for MET and EGFR were PCR amplified, and mutations were detected by sequencing. Mutation carriers were further screened for KRAS2 and TP53 mutations. Functional implications of important MET mutations were explored by molecular modeling and hepatocyte growth factor binding studies. Results: Unlike the frequently encountered somatic mutations in EGFR, MET mutations in lung tumors were germline. MET-N375S, the most frequent mutation of MET, occurred in 13% of East Asians compared with none in African Americans. The frequency of MET mutations was highest among male smokers and squamous cell carcinoma. The MET-N375S mutation seems to confer resistance to MET inhibition based on hepatocyte growth factor ligand binding, molecular modeling, and apoptotic susceptibility to MET inhibitor studies. Conclusions: MET in lung cancer tissues contained nonsynonymous mutations in the semaphorin and juxtamembrane domains but not in the tyrosine kinase domain. All the MET mutations were germline. East Asians, African-Americans, and Caucasians had different MET genotypes and haplotypes. MET mutations in the semaphorin domain affected ligand binding. (Clin Cancer Res 2009;15(18):5714–23)


Journal of Biological Chemistry | 2007

CD44 Regulates Hepatocyte Growth Factor-mediated Vascular Integrity ROLE OF c-Met, Tiam1/Rac1, DYNAMIN 2, AND CORTACTIN

Patrick A. Singleton; Ravi Salgia; Liliana Moreno-Vinasco; Jaideep Moitra; Saad Sammani; Tamara Mirzapoiazova; Joe G. N. Garcia

The preservation of vascular endothelial cell (EC) barrier integrity is critical to normal vessel homeostasis, with barrier dysfunction being a feature of inflammation, tumor angiogenesis, atherosclerosis, and acute lung injury. Therefore, agents that preserve or restore vascular integrity have important therapeutic implications. In this study, we explored the regulation of hepatocyte growth factor (HGF)-mediated enhancement of EC barrier function via CD44 isoforms. We observed that HGF promoted c-Met association with CD44v10 and recruitment of c-Met into caveolin-enriched microdomains (CEM) containing CD44s (standard form). Treatment of EC with CD44v10-blocking antibodies inhibited HGF-mediated c-Met phosphorylation and c-Met recruitment to CEM. Silencing CD44 expression (small interfering RNA) attenuated HGF-induced recruitment of c-Met, Tiam1 (a Rac1 exchange factor), cortactin (an actin cytoskeletal regulator), and dynamin 2 (a vesicular regulator) to CEM as well as HGF-induced trans-EC electrical resistance. In addition, silencing Tiam1 or dynamin 2 reduced HGF-induced Rac1 activation, cortactin recruitment to CEM, and EC barrier regulation. We observed that both HGF- and high molecular weight hyaluronan (CD44 ligand)-mediated protection from lipopolysaccharide-induced pulmonary vascular hyperpermeability was significantly reduced in CD44 knock-out mice, thus validating these in vitro findings in an in vivo murine model of inflammatory lung injury. Taken together, these results suggest that CD44 is an important regulator of HGF/c-Met-mediated in vitro and in vivo barrier enhancement, a process with essential involvement of Tiam1, Rac1, dynamin 2, and cortactin.


Physiological Genomics | 2008

Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension

Liliana Moreno-Vinasco; Mardi Gomberg-Maitland; Michael L. Maitland; Ankit A. Desai; Patrick A. Singleton; Saad Sammani; Lee Sam; Yang Liu; Aliya N. Husain; Roberto M. Lang; Mark J. Ratain; Yves A. Lussier; Joe G. N. Garcia

Pulmonary hypertension (PH) and cancer pathology share growth factor- and MAPK stress-mediated signaling pathways resulting in endothelial and smooth muscle cell dysfunction and angioproliferative vasculopathy. In this study, we assessed sorafenib, an antineoplastic agent and inhibitor of multiple kinases important in angiogenesis [VEGF receptor (VEGFR)-1-3, PDGF receptor (PDGFR)-beta, Raf-1 kinase] as a potential PH therapy. Two PH rat models were used: a conventional hypoxia-induced PH model and an augmented PH model combining dual VEGFR-1 and -2 inhibition (SU-5416, single 20 mg/kg injection) with hypoxia. In addition to normoxia-exposed control animals, four groups were maintained at 10% inspired O(2) fraction for 3.5 wk (hypoxia/vehicle, hypoxia/SU-5416, hypoxia/sorafenib, and hypoxia/SU-5416/sorafenib). Compared with normoxic control animals, rats exposed to hypoxia/SU-5416 developed hemodynamic and histological evidence of severe PH while rats exposed to hypoxia alone displayed only mild elevations in hemodynamic values (pulmonary vascular and right ventricular pressures). Sorafenib treatment (daily gavage, 2.5 mg/kg) prevented hemodynamic changes and demonstrated dramatic attenuation of PH-associated vascular remodeling. Compared with normoxic control rats, expression profiling (Affymetrix platform) of lung RNA obtained from hypoxia [false discovery rate (FDR) 6.5%]- and hypoxia/SU-5416 (FDR 1.6%)-challenged rats yielded 1,019 and 465 differentially regulated genes (fold change >1.4), respectively. A novel molecular signature consisting of 38 differentially expressed genes between hypoxia/SU-5416 and hypoxia/SU-5416/sorafenib (FDR 6.7%) was validated by either real-time RT-PCR or immunoblotting. Finally, immunoblotting studies confirmed the upregulation of the MAPK cascade in both PH models, which was abolished by sorafenib. In summary, sorafenib represents a novel potential treatment for severe PH with the MAPK cascade a potential canonical target.


American Journal of Respiratory Cell and Molecular Biology | 2010

Differential Effects of Sphingosine 1–Phosphate Receptors on Airway and Vascular Barrier Function in the Murine Lung

Saad Sammani; Liliana Moreno-Vinasco; Tamara Mirzapoiazova; Patrick A. Singleton; Eddie T. Chiang; Carrie Evenoski; Ting Wang; Biji Mathew; Aliya N. Husain; Jaideep Moitra; Xiaoguang Sun; Luis Nuñez; Jeffrey R. Jacobson; Steven M. Dudek; Viswanathan Natarajan; Joe G. N. Garcia

The therapeutic options for ameliorating the profound vascular permeability, alveolar flooding, and organ dysfunction that accompanies acute inflammatory lung injury (ALI) remain limited. Extending our previous finding that the intravenous administration of the sphingolipid angiogenic factor, sphingosine 1-phosphate (S1P), attenuates inflammatory lung injury and vascular permeability via ligation of S1PR(1), we determine that a direct intratracheal or intravenous administration of S1P, or a selective S1P receptor (S1PR(1)) agonist (SEW-2871), produces highly concentration-dependent barrier-regulatory responses in the murine lung. The intratracheal or intravenous administration of S1P or SEW-2871 at < 0.3 mg/kg was protective against LPS-induced murine lung inflammation and permeability. However, intratracheal delivery of S1P at 0.5 mg/kg (for 2 h) resulted in significant alveolar-capillary barrier disruption (with a 42% increase in bronchoalveolar lavage protein), and produced rapid lethality when delivered at 2 mg/kg. Despite the greater selectivity for S1PR(1), intratracheally delivered SEW-2871 at 0.5 mg/kg also resulted in significant alveolar-capillary barrier disruption, but was not lethal at 2 mg/kg. Consistent with the S1PR(1) regulation of alveolar/vascular barrier function, wild-type mice pretreated with the S1PR(1) inverse agonist, SB-649146, or S1PR(1)(+/-) mice exhibited reduced S1P/SEW-2871-mediated barrier protection after challenge with LPS. In contrast, S1PR(2)(-/-) knockout mice as well as mice with reduced S1PR(3) expression (via silencing S1PR3-containing nanocarriers) were protected against LPS-induced barrier disruption compared with control mice. These studies underscore the potential therapeutic effects of highly selective S1PR(1) receptor agonists in reducing inflammatory lung injury, and highlight the critical role of the S1P delivery route, S1PR(1) agonist concentration, and S1PR(1) expression in target tissues.


Circulation Research | 2009

Akt-Mediated Transactivation of the S1P1 Receptor in Caveolin-Enriched Microdomains Regulates Endothelial Barrier Enhancement by Oxidized Phospholipids

Patrick A. Singleton; Santipongse Chatchavalvanich; Panfeng Fu; Junjie Xing; Anna A. Birukova; Jennifer A. Fortune; Alexander M. Klibanov; Joe G. N. Garcia; Konstantin G. Birukov

Endothelial cell (EC) barrier dysfunction results in increased vascular permeability, leading to increased mass transport across the vessel wall and leukocyte extravasation, the key mechanisms in pathogenesis of tissue inflammation and edema. We have previously demonstrated that OxPAPC (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine) significantly enhances vascular endothelial barrier properties in vitro and in vivo and attenuates endothelial hyperpermeability induced by inflammatory and edemagenic agents via Rac and Cdc42 GTPase dependent mechanisms. These findings suggested potential important therapeutic value of barrier-protective oxidized phospholipids. In this study, we examined involvement of signaling complexes associated with caveolin-enriched microdomains (CEMs) in barrier-protective responses of human pulmonary ECs to OxPAPC. Immunoblotting from OxPAPC-treated ECs revealed OxPAPC-mediated rapid recruitment (5 minutes) to CEMs of the sphingosine 1-phosphate receptor (S1P1), the serine/threonine kinase Akt, and the Rac1 guanine nucleotide exchange factor Tiam1 and phosphorylation of caveolin-1, indicative of signaling activation in CEMs. Abolishing CEM formation (methyl-&bgr;-cyclodextrin) blocked OxPAPC-mediated Rac1 activation, cytoskeletal reorganization, and EC barrier enhancement. Silencing (small interfering RNA) Akt expression blocked OxPAPC-mediated S1P1 activation (threonine phosphorylation), whereas silencing S1P1 receptor expression blocked OxPAPC-mediated Tiam1 recruitment to CEMs, Rac1 activation, and EC barrier enhancement. To confirm our in vitro results in an in vivo murine model of acute lung injury with pulmonary vascular hyperpermeability, we observed that selective lung silencing of caveolin-1 or S1P1 receptor expression blocked OxPAPC-mediated protection from ventilator-induced lung injury. Taken together, these results suggest Akt-dependent transactivation of S1P1 within CEMs is important for OxPAPC-mediated cortical actin rearrangement and EC barrier protection.

Collaboration


Dive into the Patrick A. Singleton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liliana Moreno-Vinasco

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Ravi Salgia

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Saad Sammani

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge