Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saad Sammani is active.

Publication


Featured researches published by Saad Sammani.


Anesthesia & Analgesia | 2011

The novel role of the mu opioid receptor in lung cancer progression: a laboratory investigation.

Biji Mathew; Frances E. Lennon; Jessica Siegler; Tamara Mirzapoiazova; Nurbek Mambetsariev; Saad Sammani; Lynnette M. Gerhold; Patrick J. LaRiviere; Chin-Tu Chen; Joe G. N. Garcia; Ravi Salgia; Jonathan Moss; Patrick A. Singleton

BACKGROUND:The possibility that &mgr; opioid agonists can influence cancer recurrence is a subject of recent interest. Epidemiologic studies suggested that there were differences in cancer recurrence in breast and prostate cancer contingent on anesthetic regimens. In this study, we identify a possible mechanism for these epidemiologic findings on the basis of &mgr; opioid receptor (MOR) regulation of Lewis lung carcinoma (LLC) tumorigenicity in cell and animal models. METHODS:We used human lung tissue and human non–small cell lung cancer (NSCLC) cell lines and evaluated MOR expression using immunoblot and immunohistochemical analysis. LLC cells were treated with the peripheral opioid antagonist methylnaltrexone (MNTX) or MOR shRNA and evaluated for proliferation, invasion, and soft agar colony formation in vitro and primary tumor growth and lung metastasis in C57BL/6 and MOR knockout mice using VisEn fluorescence mediated tomography imaging and immunohistochemical analysis. RESULTS:We provide several lines of evidence that the MOR may be a potential target for lung cancer, a disease with high mortality and few treatment options. We first observed that there is ∼5- to 10-fold increase in MOR expression in lung samples from patients with NSCLC and in several human NSCLC cell lines. The MOR agonists morphine and [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) increased in vitro LLC cell growth. Treatment with MNTX or silencing MOR expression inhibited LLC invasion and anchorage-independent growth by 50%–80%. Injection of MOR silenced LLC lead to a ∼65% reduction in mouse lung metastasis. In addition, MOR knockout mice do not develop significant tumors when injected with LLC in comparison with wild-type controls. Finally, continuous infusion of the peripheral opioid antagonist MNTX attenuates primary LLC tumor growth and reduces lung metastasis. CONCLUSIONS:Taken together, our data suggest a possible direct effect of opiates on lung cancer progression, and provide a plausible explanation for the epidemiologic findings. Our observations further suggest a possible therapeutic role for opioid antagonists.


Journal of Biological Chemistry | 2007

CD44 Regulates Hepatocyte Growth Factor-mediated Vascular Integrity ROLE OF c-Met, Tiam1/Rac1, DYNAMIN 2, AND CORTACTIN

Patrick A. Singleton; Ravi Salgia; Liliana Moreno-Vinasco; Jaideep Moitra; Saad Sammani; Tamara Mirzapoiazova; Joe G. N. Garcia

The preservation of vascular endothelial cell (EC) barrier integrity is critical to normal vessel homeostasis, with barrier dysfunction being a feature of inflammation, tumor angiogenesis, atherosclerosis, and acute lung injury. Therefore, agents that preserve or restore vascular integrity have important therapeutic implications. In this study, we explored the regulation of hepatocyte growth factor (HGF)-mediated enhancement of EC barrier function via CD44 isoforms. We observed that HGF promoted c-Met association with CD44v10 and recruitment of c-Met into caveolin-enriched microdomains (CEM) containing CD44s (standard form). Treatment of EC with CD44v10-blocking antibodies inhibited HGF-mediated c-Met phosphorylation and c-Met recruitment to CEM. Silencing CD44 expression (small interfering RNA) attenuated HGF-induced recruitment of c-Met, Tiam1 (a Rac1 exchange factor), cortactin (an actin cytoskeletal regulator), and dynamin 2 (a vesicular regulator) to CEM as well as HGF-induced trans-EC electrical resistance. In addition, silencing Tiam1 or dynamin 2 reduced HGF-induced Rac1 activation, cortactin recruitment to CEM, and EC barrier regulation. We observed that both HGF- and high molecular weight hyaluronan (CD44 ligand)-mediated protection from lipopolysaccharide-induced pulmonary vascular hyperpermeability was significantly reduced in CD44 knock-out mice, thus validating these in vitro findings in an in vivo murine model of inflammatory lung injury. Taken together, these results suggest that CD44 is an important regulator of HGF/c-Met-mediated in vitro and in vivo barrier enhancement, a process with essential involvement of Tiam1, Rac1, dynamin 2, and cortactin.


Physiological Genomics | 2008

Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension

Liliana Moreno-Vinasco; Mardi Gomberg-Maitland; Michael L. Maitland; Ankit A. Desai; Patrick A. Singleton; Saad Sammani; Lee Sam; Yang Liu; Aliya N. Husain; Roberto M. Lang; Mark J. Ratain; Yves A. Lussier; Joe G. N. Garcia

Pulmonary hypertension (PH) and cancer pathology share growth factor- and MAPK stress-mediated signaling pathways resulting in endothelial and smooth muscle cell dysfunction and angioproliferative vasculopathy. In this study, we assessed sorafenib, an antineoplastic agent and inhibitor of multiple kinases important in angiogenesis [VEGF receptor (VEGFR)-1-3, PDGF receptor (PDGFR)-beta, Raf-1 kinase] as a potential PH therapy. Two PH rat models were used: a conventional hypoxia-induced PH model and an augmented PH model combining dual VEGFR-1 and -2 inhibition (SU-5416, single 20 mg/kg injection) with hypoxia. In addition to normoxia-exposed control animals, four groups were maintained at 10% inspired O(2) fraction for 3.5 wk (hypoxia/vehicle, hypoxia/SU-5416, hypoxia/sorafenib, and hypoxia/SU-5416/sorafenib). Compared with normoxic control animals, rats exposed to hypoxia/SU-5416 developed hemodynamic and histological evidence of severe PH while rats exposed to hypoxia alone displayed only mild elevations in hemodynamic values (pulmonary vascular and right ventricular pressures). Sorafenib treatment (daily gavage, 2.5 mg/kg) prevented hemodynamic changes and demonstrated dramatic attenuation of PH-associated vascular remodeling. Compared with normoxic control rats, expression profiling (Affymetrix platform) of lung RNA obtained from hypoxia [false discovery rate (FDR) 6.5%]- and hypoxia/SU-5416 (FDR 1.6%)-challenged rats yielded 1,019 and 465 differentially regulated genes (fold change >1.4), respectively. A novel molecular signature consisting of 38 differentially expressed genes between hypoxia/SU-5416 and hypoxia/SU-5416/sorafenib (FDR 6.7%) was validated by either real-time RT-PCR or immunoblotting. Finally, immunoblotting studies confirmed the upregulation of the MAPK cascade in both PH models, which was abolished by sorafenib. In summary, sorafenib represents a novel potential treatment for severe PH with the MAPK cascade a potential canonical target.


American Journal of Respiratory Cell and Molecular Biology | 2010

Differential Effects of Sphingosine 1–Phosphate Receptors on Airway and Vascular Barrier Function in the Murine Lung

Saad Sammani; Liliana Moreno-Vinasco; Tamara Mirzapoiazova; Patrick A. Singleton; Eddie T. Chiang; Carrie Evenoski; Ting Wang; Biji Mathew; Aliya N. Husain; Jaideep Moitra; Xiaoguang Sun; Luis Nuñez; Jeffrey R. Jacobson; Steven M. Dudek; Viswanathan Natarajan; Joe G. N. Garcia

The therapeutic options for ameliorating the profound vascular permeability, alveolar flooding, and organ dysfunction that accompanies acute inflammatory lung injury (ALI) remain limited. Extending our previous finding that the intravenous administration of the sphingolipid angiogenic factor, sphingosine 1-phosphate (S1P), attenuates inflammatory lung injury and vascular permeability via ligation of S1PR(1), we determine that a direct intratracheal or intravenous administration of S1P, or a selective S1P receptor (S1PR(1)) agonist (SEW-2871), produces highly concentration-dependent barrier-regulatory responses in the murine lung. The intratracheal or intravenous administration of S1P or SEW-2871 at < 0.3 mg/kg was protective against LPS-induced murine lung inflammation and permeability. However, intratracheal delivery of S1P at 0.5 mg/kg (for 2 h) resulted in significant alveolar-capillary barrier disruption (with a 42% increase in bronchoalveolar lavage protein), and produced rapid lethality when delivered at 2 mg/kg. Despite the greater selectivity for S1PR(1), intratracheally delivered SEW-2871 at 0.5 mg/kg also resulted in significant alveolar-capillary barrier disruption, but was not lethal at 2 mg/kg. Consistent with the S1PR(1) regulation of alveolar/vascular barrier function, wild-type mice pretreated with the S1PR(1) inverse agonist, SB-649146, or S1PR(1)(+/-) mice exhibited reduced S1P/SEW-2871-mediated barrier protection after challenge with LPS. In contrast, S1PR(2)(-/-) knockout mice as well as mice with reduced S1PR(3) expression (via silencing S1PR3-containing nanocarriers) were protected against LPS-induced barrier disruption compared with control mice. These studies underscore the potential therapeutic effects of highly selective S1PR(1) receptor agonists in reducing inflammatory lung injury, and highlight the critical role of the S1P delivery route, S1PR(1) agonist concentration, and S1PR(1) expression in target tissues.


American Journal of Respiratory and Critical Care Medicine | 2008

Essential Role of Pre-B-Cell Colony Enhancing Factor in Ventilator-induced Lung Injury

Sang Bum Hong; Yong Huang; Liliana Moreno-Vinasco; Saad Sammani; Jaideep Moitra; Joseph W. Barnard; Shwu Fan Ma; Tamara Mirzapoiazova; Carrie Evenoski; Ryan R. Reeves; Eddie T. Chiang; Gabriel Lang; Aliya N. Husain; Steven M. Dudek; Jeffrey R. Jacobson; Shui Q. Ye; Yves A. Lussier; Joe G. N. Garcia

RATIONALE We previously demonstrated pre-B-cell colony enhancing factor (PBEF) as a biomarker in sepsis and sepsis-induced acute lung injury (ALI) with genetic variants conferring ALI susceptibility. OBJECTIVES To explore mechanistic participation of PBEF in ALI and ventilator-induced lung injury (VILI). METHODS Two models of VILI were utilized to explore the role of PBEF using either recombinant PBEF or PBEF(+/-) mice. MEASUREMENTS AND MAIN RESULTS Initial in vitro studies demonstrated recombinant human PBEF (rhPBEF) as a direct rat neutrophil chemotactic factor with in vivo studies demonstrating marked increases in bronchoalveolar lavage (BAL) leukocytes (PMNs) after intratracheal injection in C57BL/6J mice. These changes were accompanied by increased BAL levels of PMN chemoattractants (KC and MIP-2) and modest increases in lung vascular and alveolar permeability. We next explored the potential synergism between rhPBEF challenge (intratracheal) and a model of limited VILI (4 h, 30 ml/kg tidal volume) and observed dramatic increases in BAL PMNs, BAL protein, and cytokine levels (IL-6, TNF-alpha, KC) compared with either challenge alone. Gene expression profiling identified induction of ALI- and VILI-associated gene modules (nuclear factor-kappaB, leukocyte extravasation, apoptosis, Toll receptor pathways). Heterozygous PBEF(+/-) mice were significantly protected (reduced BAL protein, BAL IL-6 levels, peak inspiratory pressures) when exposed to a model of severe VILI (4 h, 40 ml/kg tidal volume) and exhibited significantly reduced expression of VILI-associated gene expression modules. Finally, strategies to reduce PBEF availability (neutralizing antibody) resulted in significant protection from VILI. CONCLUSIONS These studies implicate PBEF as a key inflammatory mediator intimately involved in both the development and severity of ventilator-induced ALI.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Differential regulation of sphingosine kinases 1 and 2 in lung injury.

Raj Wadgaonkar; Vipul Patel; Natalia Grinkina; Carol Romano; Jing Liu; Yutong Zhao; Saad Sammani; Joe G. N. Garcia; Viswanathan Natarajan

Two mammalian sphingosine kinase (SphK) isoforms, SphK1 and SphK2, possess identical kinase domains but have distinct kinetic properties and subcellular localizations, suggesting each has one or more specific roles in sphingosine-1-phosphate (S1P) generation. Although both kinases use sphingosine as a substrate to generate S1P, the mechanisms controlling SphK activation and subsequent S1P generation during lung injury are not fully understood. In this study, we established a murine lung injury model to investigate LPS-induced lung injury in SphK1 knockout (SphK1(-/-)) and wild-type (WT) mice. We found that SphK1(-/-) mice were much more susceptible to LPS-induced lung injury compared with their WT counterparts, quantified by multiple parameters including cytokine induction. Intriguingly, overexpression of WT SphK1 delivered by adenoviral vector to the lungs protected SphK1(-/-) mice from lung injury and attenuated the severity of the response to LPS. However, adenoviral overexpression of a SphK1 kinase-dead mutant (SphKKD) in SphK1(-/-) mouse lungs further exacerbated the response to LPS as well as the extent of lung injury. WT SphK2 adenoviral overexpression also failed to provide protection and, in fact, augmented the degree of LPS-induced lung injury. This suggested that, in vascular injury, S1P generated by SphK2 activation plays a distinctly separate role compared with SphK1-dependent S1P generation and survival signaling. Microarray and real-time RT-PCR analysis of SphK1 and SphK2 expression levels during lung injury revealed that, in WT mice, LPS treatment caused significantly enhanced SphK1 expression ( approximately 5x) levels within 6 h, which declined back to baseline levels by 24 h posttreatment. In contrast, expression of SphK2 was gradually induced following LPS treatment and was elevated within 24 h. Collectively, our results for the first time demonstrate distinct functional roles of the two SphK isoforms in the regulation of LPS-induced lung injury.


European Respiratory Journal | 2007

Suppression of endotoxin-induced inflammation by taxol

Tamara Mirzapoiazova; Irina A. Kolosova; L. Moreno; Saad Sammani; Joe G. N. Garcia; Alexander D. Verin

The pathogenesis of acute lung injury includes transendothelial diapedesis of leukocytes into lung tissues and disruption of endothelial/epithelial barriers leading to protein-rich oedema. In vitro studies show that the microtubule network plays a role in the regulation of endothelial permeability as well as in neutrophil locomotion. It was hypothesised that the microtubule-stabilising agent, taxol, might attenuate inflammation and vascular leak associated with acute lung injury in vivo. The effect of intravenously delivered taxol was assessed using a model of murine lung injury induced by intratracheal lipopolysaccharide (LPS) administration. Parameters of lung injury and inflammation were assessed 18 h after treatment. Intravenously delivered taxol significantly reduced inflammatory histological changes in lung parenchyma and parameters of LPS-induced inflammation: infiltration of proteins and inflammatory cells into bronchoalveolar lavage fluid, lung myeloperoxidase activity, and extravasation of Evans blue-labelled albumin into lung tissue. Taxol alone (in the absence of LPS) had no appreciable effect on these parameters. In addition to lung proteins, intravenous taxol reduced accumulation of leukocytes in ascitic fluid in a model of LPS-induced peritonitis. Taken together, the present data demonstrate that microtubule stabilisation with taxol systemically attenuates lipopolysaccharide-induced inflammation and vascular leak.


European Respiratory Journal | 2009

Amifostine reduces lung vascular permeability via suppression of inflammatory signalling

Panfeng Fu; Anna A. Birukova; Junjie Xing; Saad Sammani; Jeffrey S. Murley; Joe G. N. Garcia; David J. Grdina; Konstantin G. Birukov

Despite an encouraging outcome of antioxidant therapy in animal models of acute lung injury, effective antioxidant agents for clinical application remain to be developed. The present study investigated the effect of pre-treatment with amifostine, a thiol antioxidant compound, on lung endothelial barrier dysfunction induced by Gram-negative bacteria wall-lipopolysaccharide (LPS). Endothelial permeability was monitored by changes in transendothelial electrical resistance. Cytoskeletal remodelling and reactive oxygen species (ROS) production was examined by immunofluorescence. Cell signalling was assessed by Western blot. Measurements of Evans blue extravasation, cell count and protein content in bronchoalveolar lavage fluid were used as in vivo parameters of lung vascular permeability. Hydrogen peroxide, LPS and interleukin-6 caused cytoskeletal reorganisation and increased permeability in the pulmonary endothelial cells, reflecting endothelial barrier dysfunction. These disruptive effects were inhibited by pre-treatment with amifostine and linked to the amifostine-mediated abrogation of ROS production and redox-sensitive signalling cascades, including p38, extracellular signal regulated kinase 1/2, mitogen-activated protein kinases and the nuclear factor-κB pathway. In vivo, concurrent amifostine administration inhibited LPS-induced oxidative stress and p38 mitogen-activated protein kinase activation, which was associated with reduced vascular leak and neutrophil recruitment to the lungs. The present study demonstrates, for the first time, protective effects of amifostine against lipopolysaccharide-induced lung vascular leak in vitro and in animal models of lipopolysaccharide-induced acute lung injury.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

High-molecular-weight hyaluronan is a novel inhibitor of pulmonary vascular leakiness

Patrick A. Singleton; Tamara Mirzapoiazova; Yurong Guo; Saad Sammani; Nurbek Mambetsariev; Frances E. Lennon; Liliana Moreno-Vinasco; Joe G. N. Garcia

Endothelial cell (EC) barrier dysfunction results in increased vascular permeability, a perturbation observed in inflammatory states, tumor angiogenesis, atherosclerosis, and both sepsis and acute lung injury. Therefore, agents that enhance EC barrier integrity have important therapeutic implications. We observed that binding of high-molecular-weight hyaluronan (HMW-HA) to its cognate receptor CD44 within caveolin-enriched microdomains (CEM) enhances human pulmonary EC barrier function. Immunocytochemical analysis indicated that HMW-HA promotes redistribution of a significant population of CEM to areas of cell-cell contact. Quantitative proteomic analysis of CEM isolated from human EC demonstrated HMW-HA-mediated recruitment of cytoskeletal regulatory proteins (annexin A2, protein S100-A10, and filamin A/B). Inhibition of CEM formation [caveolin-1 small interfering RNA (siRNA) and cholesterol depletion] or silencing (siRNA) of CD44, annexin A2, protein S100-A10, or filamin A/B expression abolished HMW-HA-induced actin cytoskeletal reorganization and EC barrier enhancement. To confirm our in vitro results in an in vivo model of inflammatory lung injury with vascular hyperpermeability, we observed that the protective effects of HMW-HA on LPS-induced pulmonary vascular leakiness were blocked in caveolin-1 knockout mice. Furthermore, targeted inhibition of CD44 expression in the mouse pulmonary vasculature significantly reduced HMW-HA-mediated protection from LPS-induced hyperpermeability. These data suggest that HMW-HA, via CD44-mediated CEM signaling events, represents a potentially useful therapeutic agent for syndromes of increased vascular permeability.


American Journal of Respiratory Cell and Molecular Biology | 2011

Non–Muscle Myosin Light Chain Kinase Isoform Is a Viable Molecular Target in Acute Inflammatory Lung Injury

Tamara Mirzapoiazova; Jaideep Moitra; Liliana Moreno-Vinasco; Saad Sammani; Jerry R. Turner; Eddie T. Chiang; Carrie Evenoski; Ting Wang; Patrick A. Singleton; Yong Huang; Yves A. Lussier; D. Martin Watterson; Steven M. Dudek; Joe G. N. Garcia

Acute lung injury (ALI) and mechanical ventilator-induced lung injury (VILI), major causes of acute respiratory failure with elevated morbidity and mortality, are characterized by significant pulmonary inflammation and alveolar/vascular barrier dysfunction. Previous studies highlighted the role of the non-muscle myosin light chain kinase isoform (nmMLCK) as an essential element of the inflammatory response, with variants in the MYLK gene that contribute to ALI susceptibility. To define nmMLCK involvement further in acute inflammatory syndromes, we used two murine models of inflammatory lung injury, induced by either an intratracheal administration of lipopolysaccharide (LPS model) or mechanical ventilation with increased tidal volumes (the VILI model). Intravenous delivery of the membrane-permeant MLC kinase peptide inhibitor, PIK, produced a dose-dependent attenuation of both LPS-induced lung inflammation and VILI (~50% reductions in alveolar/vascular permeability and leukocyte influx). Intravenous injections of nmMLCK silencing RNA, either directly or as cargo within angiotensin-converting enzyme (ACE) antibody-conjugated liposomes (to target the pulmonary vasculature selectively), decreased nmMLCK lung expression (∼70% reduction) and significantly attenuated LPS-induced and VILI-induced lung inflammation (∼40% reduction in bronchoalveolar lavage protein). Compared with wild-type mice, nmMLCK knockout mice were significantly protected from VILI, with significant reductions in VILI-induced gene expression in biological pathways such as nrf2-mediated oxidative stress, coagulation, p53-signaling, leukocyte extravasation, and IL-6-signaling. These studies validate nmMLCK as an attractive target for ameliorating the adverse effects of dysregulated lung inflammation.

Collaboration


Dive into the Saad Sammani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liliana Moreno-Vinasco

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ting Wang

University of Arizona

View shared research outputs
Top Co-Authors

Avatar

Jeffrey R. Jacobson

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viswanathan Natarajan

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge